
Submitted to the Annals of Statistics

CONVERGENCE RATES OF OBLIQUE REGRESSION TREES FOR
FLEXIBLE FUNCTION LIBRARIES

ByMatias D. Cattaneoa, Rajita Chandakb, and JasonM. Klusowskic

Department of Operations Research and Financial Engineering, Princeton University
acattaneo@princeton.edu
brchandak@princeton.edu

cjason.klusowski@princeton.edu

We develop a theoretical framework for the analysis of oblique decision
trees, where the splits at each decision node occur at linear combinations
of the covariates (as opposed to conventional tree constructions that force
axis-aligned splits involving only a single covariate). While this methodology
has garnered significant attention from the computer science and optimization
communities since the mid-80s, the advantages they offer over their axis-
aligned counterparts remain only empirically justified, and explanations for
their success are largely based on heuristics. Filling this long-standing gap be-
tween theory and practice, we show that oblique regression trees (constructed
by recursively minimizing squared error) satisfy a type of oracle inequality
and can adapt to a rich library of regression models consisting of linear combi-
nations of ridge functions and their limit points. This provides a quantitative
baseline to compare and contrast decision trees with other less interpretable
methods, such as projection pursuit regression and neural networks, which
target similar model forms. Contrary to popular belief, one need not always
trade-off interpretability with accuracy. Specifically, we show that, under suit-
able conditions, oblique decision trees achieve similar predictive accuracy
as neural networks for the same library of regression models. To address the
combinatorial complexity of finding the optimal splitting hyperplane at each
decision node, our proposed theoretical framework can accommodate many
existing computational tools in the literature. Our results rely on (arguably
surprising) connections between recursive adaptive partitioning and sequential
greedy approximation algorithms for convex optimization problems (e.g., or-
thogonal greedy algorithms), which may be of independent theoretical interest.
Using our theory and methods, we also study oblique random forests.

August 31, 2023

1. Introduction. Decision trees and neural networks are conventionally seen as two contrast-
ing approaches to learning. The popular belief is that decision trees compromise accuracy for
being easy to use and understand, whereas neural networks are more accurate, but at the cost of
being less transparent. We challenge the status quo by showing that, under suitable conditions,
oblique decision trees (also known as multivariate decision trees) achieve similar predictive
accuracy as neural networks on the same library of regression models. Of course, while it is
somewhat subjective as to what one regards as being transparent, it is generally agreed upon
that neural networks are less interpretable than decision trees (Murdoch et al., 2019; Rudin,
2019). Indeed, trees are arguably more intuitive in their construction, which makes it easier to
understand how an output is assigned to a given input, including which predictor variables
were relevant in its determination. For example, in clinical, legal, or business contexts, it

MSC2020 subject classifications: Primary 62G08; secondary 62L12.
Keywords and phrases: decision trees; neural networks; projection pursuit regression; CART; random forest.

1

https://imstat.org/journals-and-publications/annals-of-statistics/
mailto:cattaneo@princeton.edu
mailto:rchandak@princeton.edu
mailto:jason.klusowski@princeton.edu
https://mathscinet.ams.org/mathscinet/msc/msc2020.html

2 1 INTRODUCTION

may be desirable to build a predictive model that mimics the way a human user thinks and
reasons, especially if the results (of scientific or evidential value) are to be communicated to a
statistical lay audience. Even though it may be sensible to deploy estimators that more directly
target the functional form of the model, predictive accuracy is not the only factor the modern
researcher must consider when designing and building an automated system. Facilitating
human-machine interaction and engagement is also an essential part of this process. To this
end, the technique of knowledge distillation (Buciluundefined, Caruana and Niculescu-Mizil,
2006) is a quick and easy way to enhance the fidelity of an interpretable model, without
degrading the out-of-sample performance too severely. In the context of decision trees and
neural networks, one distills the knowledge acquired by a neural network—which relies on
nontransparent, distributed hierarchical representations of the data—and expresses similar
knowledge in a decision tree that consists of, in contrast, easier to understand hierarchical
decision rules (Frosst and Hinton, 2017). This is accomplished by first training a neural
network on the observed data, and then, in turn, training a decision tree on data generated
from the fitted neural network model.

In this paper, we show that oblique regression trees (constructed by recursively minimizing
squared error) satisfy a type of oracle inequality and can adapt to a rich library of regression
models consisting of linear combinations of ridge functions. This provides a quantitative
baseline to compare and contrast decision trees with other less interpretable methods, such as
projection pursuit regression, neural networks, and boosting machines, which directly target
similar model forms. When neural network and decision tree models are used in tandem to
enhance generalization and interpretability, our theory allows one to measure the knowledge
distilled from a neural network to a decision tree. Using our theory and methods, we also
study oblique random forests.

1.1. Background and Prior Work. Let (y1,xT
1), . . . , (yn,xT

n) be a random sample from a joint
distribution P(y,x) = Py|xPx supported onY×X. Here x = (x1, . . . , xp)T is a vector of p predictor
variables supported on X ⊆ Rp and y is a real-valued outcome variable with range Y ⊆ R.
Our objective is to compute an estimate of the conditional expectation, µ(x) = E[y | x], a
target which is optimal for predicting y from some function of x in mean squared error. One
estimation scheme can be constructed by dividing the input space X into subgroups based on
shared characteristics of y—something decision trees can do well.

A decision tree is a hierarchically organized data structure constructed in a top down, greedy
manner through recursive binary splitting. According to CART methodology (Breiman et al.,
1984), a parent node t (i.e., a region in X) in the tree is divided into two child nodes, tL and tR,
by maximizing the decrease in sum-of-squares error (SSE)

(1) ∆̂(b,a, t) =
1
n

∑
xi∈t

(yi − yt)
2 −

1
n

∑
xi∈t

(yi − ytL
1(aTxi ≤ b) − ytR1(aTxi > b))2,

with respect to (b,a), with 1(·) denoting the indicator function and yt denoting the sample
average of the yi data whose corresponding xi data lies in the node t. In the conventional
axis-aligned (or, univariate) CART algorithm (Breiman et al., 1984, Section 2.2), splits occur
along values of a single covariate, and so the search space for a is restricted to the set of
standard basis vectors in Rp. In this case, the induced partition of the input space X is a set
of hyper-rectangles. On the other hand, the oblique CART algorithm (Breiman et al., 1984,
Section 5.2) allows for linear combinations of covariates, extending the search space for a to
be all of Rp. Such a procedure generates regions in Rp that are convex polytopes.

The solution of (1) yields estimates (b̂, â), and the refinement of t produces child nodes
tL = {x ∈ t : âTx ≤ b̂} and tR = {x ∈ t : âTx > b̂}. These child nodes become new parent nodes at

1.1 Background and Prior Work 3

the next level of the tree and can be further refined in the same manner until a desired depth is
reached. To obtain a maximal decision tree TK of depth K, the procedure is iterated K times
or until either (i) the node contains a single data point (yi,xT

i) or (ii) all input values xi and/or
all response values yi within the node are the same. The maximal decision tree with maximum
depth is denoted by Tmax. An illustration of a maximal oblique decision tree with depth K = 2
is shown in Figure 1. For contrast, in Figure 2, we show a maximal axis-aligned decision tree
with depth K = 2.

In a conventional regression problem, where the goal is to estimate the conditional mean
response µ(x), the canonical tree output for x ∈ t is yt, i.e., if T is a decision tree, then

(2) µ̂(T)(x) = yt =
1

n(t)

∑
xi∈t

yi,

where n(t) denotes the number of observations in the node t. However, one can aggregate
the data in each node in a number of ways, depending on the form of the target estimand.
In the most general setting, under weak assumptions, all of our forthcoming theory holds
when the node output is the result of a least squares projection onto the linear span of a
finite dictionary H that includes the constant function (e.g., polynomials, splines), that is,
ŷt ∈ argminh∈span(H)

∑
xi∈t(yi − h(xi))2.

x1

x
2

t3

t4

t6

t5

t0

t2t1

t6t5t4t3

aT
1 x ≤ b1 aT

1 x > b1

aT
2 x ≤ b2 aT

3 x ≤ b3aT
2 x > b2 aT

3 x > b3

Fig 1: A maximal oblique decision tree with depth K = 2 in p = 2 dimensions. Splits occur
along hyperplanes of the form a1x1 + a2x2 = b.

x1

x
2

t3 t4

t6t5
t0

t2t1

t6t5t4t3

x2 ≤ b1 x2 > b1

x1 ≤ b2 x1 ≤ b3x1 > b2 x1 > b3

Fig 2: A maximal axis-aligned decision tree with depth K = 2 in p = 2 dimensions. Splits
occur along individual covariates of the form x j = b for j = 1,2.

One of the main practical issues with oblique CART is that the computational complexity
of minimizing the squared error in (1) in each node is extremely demanding (in fact, it is
NP-hard). For example, if we desire to split a node t with n(t) observations for axis-aligned
CART, an exhaustive search would require at most p · n(t) evaluations, whereas oblique CART
would require a prodigious 2p

(
n(t)

p

)
evaluations (Murthy, Kasif and Salzberg, 1994).

4 1 INTRODUCTION

x1

x2

xp

...

φ(aT1 x)

φ(aT2 x)

φ(aTKx)

...

g

Fig 3: A single hidden layer neural network with K hidden nodes.

To deal with these computational demands, Breiman et al. (1984) first suggested a method
for inducing oblique decision trees. They use a fully deterministic hill-climbing algorithm
to search for the best oblique split. A backward feature elimination process is also carried
out to delete irrelevant features from the split. Heath, Kasif and Salzberg (1993) propose a
simulated annealing optimization algorithm, which uses randomization to search for the best
split to potentially avoid getting stuck in a local optimum. Murthy, Kasif and Salzberg (1994)
use a combination of deterministic hill-climbing and random perturbations in an attempt to
find a good hyperplane. See Brodley and Utgoff (1995) for additional variations on these
algorithms. Other works employ statistical techniques like linear discriminant analysis (LDA)
(López-Chau et al., 2013; Li et al., 2003; Loh and Shih, 1997), principle components analysis
(PCA) (Menze et al., 2011; Rodriguez, Kuncheva and Alonso, 2006), and random projections
(Tomita et al., 2020).

While not the focus of the present paper, regarding non-greedy training, other researchers
have attempted to find globally optimal tree solutions using linear programming (Bennett,
1994) or mixed-integer linear programming (Bertsimas and Dunn, 2017; Bertsimas, Dunn
and Wang, 2021). It should be clear that all of our results hold verbatim for optimal trees,
as greedy implementations belong to the same feasible set. While usually better than greedy
trees in terms of predictive performance, scalability to large data sets is the most salient
obstacle with globally optimal trees. Moreover, on a qualitative level, a globally optimal
tree arguably detracts from the interpretability, as humans, in contrast, often exhibit bounded
rationality and therefore make decisions in a more sequential (rather than anticipatory) manner
(Hüllermeier et al., 2021, and references therein). Relatedly, another training technique is
based on constructing deep neural networks that realize oblique decision trees (Lee and
Jaakkola, 2020; Yang, Morillo and Hospedales, 2018) and then utilizing tools designed for
training neural networks.

While there has been a plethora of greedy algorithms over the past 30 years for training oblique
decision trees, the literature is essentially silent on their statistical properties. For instance,
assuming one can come close to optimizing (1), what types of regression functions can greedy
oblique trees estimate and how well?

1.2. Ridge Expansions. Many empirical studies reveal that oblique trees generally produce
smaller trees with better accuracy compared to axis-aligned trees (Heath, Kasif and Salzberg,
1993; Murthy, Kasif and Salzberg, 1994) and can often be comparable, in terms of performance,
to neural networks (Bertsimas, Mazumder and Sobiesk, 2018; Bertsimas and Dunn, 2019;
Bertsimas and Stellato, 2021). Intuitively, allowing a tree-building system to use both oblique
and axis-aligned splits broadens its flexibility. To theoretically showcase these qualities and
make comparisons with other procedures (such as neural networks and projection pursuit

5

regression), we will consider modeling µ with finite linear combinations of ridge functions,
i.e., the library

G =

{
g(x) =

M∑
k=1

gk(aT
k x), ak ∈ R

p, gk : R 7→ R, k = 1, . . . ,M, M ≥ 1, ∥g∥L1 <∞

}
,

where ∥ · ∥L1 is a total variation norm that is defined in Section 2.1. This library encompasses
the functions produced from projection pursuit regression, and, more specifically—by taking
gk(z) = ϕ(z − bk), where ϕ is a fixed activation function, such as a sigmoid function or ReLU,
and bk ∈ R is a bias parameter—single hidden layer feed-forward neural networks. A graphical
representation of such a neural network is provided in Figure 3. A neural network forms
predictions according to distributed hierarchical representations of the data, whereas a decision
tree uses hierarchical decision rules (c.f., Figures 1 and 2).

Since the first version of our manuscript was released on arXiv, several subsequent papers
have employed our novel theoretical and methodological statistical framework to derive con-
sistency results for decision tree and related methods. For example, Zhan, Liu and Xia (2023)
applies our core ideas and proof techniques to deduce a consistency result for oblique decision
trees in low-dimensional settings (c.f., Corollary 2.4 below), but under stronger assumptions
on the target function class G and without accounting for the underlying optimization con-
straints (c.f., our novel optimization framework in Section 2.2). Raymaekers et al. (2023) also
applies our core ideas and proof techniques to deduce a consistency result for axis-aligned
decision trees within an alternative computation framework, but under stronger assumptions
on the target function class G. Finally, Parhi and Nowak (2023) and DeVore et al. (2023),
among others (see their references), study consistency of deep neural network methods using
similar notions of Hilbert function spaces and total variation norms as our paper does for
adaptive decision trees and shallow neural networks, but without accounting for the underlying
optimization constraints. In particular, Parhi and Nowak (2023) also show that neural networks
are able to adapt to sparsity in the data (c.f., Section 3 below).

2. Main Results. We first introduce notation and assumptions that are used throughout the
remainder of the paper.

2.1. Notation and Assumptions. For a function f : Rp→ R, we define f = (f (x1), . . . , f (xn))T

to be the n×1 vector of f evaluated at the design points X = (x1, . . . ,xn)T ∈ Rn×p. Likewise, we
use µ̂(TK) to denote the n × 1 vector of fitted values of µ̂(TK). For functions f ,g ∈L2(Px), let
∥ f ∥2 =

∫
X

(f (x))2dPx(x) be the squared L2(Px) norm and let ∥f∥2n = 1
n
∑n

i=1(f (xi))2 denote the
squared norm with respect to the empirical measure on the data. Let ⟨f,g⟩n = 1

n
∑n

i=1 f (xi)g(xi)
denote the inner product with respect to the empirical measure on the data. The response
data vector y = (y1, . . . , yn)T ∈ Rn is viewed as a relation, defined on the design matrix X,
that associates xi with yi. Thus, for example, ∥y − f∥2n = 1

n
∑n

i=1(yi − f (xi))2 and ⟨y, f⟩n =
1
n
∑n

i=1 yi f (xi). We use [T] to denote the collection of internal (non-terminal) nodes and
{t : t ∈ T } to denote the terminal nodes of the tree. The cardinality of a set A is denoted by |A|.

We define the total variation of a ridge function x 7→ h(aTx) with a ∈ Rp and h : R→ R in the
node t as

V(h,a, t) = sup
P

|P|−1∑
ℓ=0

|h(zℓ+1) − h(zℓ)|,

where the supremum is over all partitions P = {z0, z1, . . . , z|P|} of the interval I(a, t) =
[minx∈t aTx, maxx∈t aTx] ⊂ R (we allow for the possibility that one or both of the endpoints is

6 2 MAIN RESULTS

infinite). If the function h is smooth, then V(h,a, t) admits the familiar integral representation∫
I(a,t) |h

′(z)|dz. We can then define the L1 norm of an additive function h(x) =
∑M

k=1 hk(x) as

∥h∥L1 =

M∑
k=1

V(hk,ak, t).

Central to our results is the L1 total variation norm of f ∈ F = cl(G) in the node t, the closure
being taken in L2(Px). This quantity captures the local capacity of a function in F . It is
defined as

∥ f ∥L1(t) := lim
ε↓0

inf
g∈G

{ M∑
k=1

V(gk,ak, t) : g(x) =
M∑

k=1

gk(aT
k x), ∥ f − g∥ ≤ ε

}
.

For simplicity, we write ∥ f ∥L1 for ∥ f ∥L1(X). This norm may be thought of as an ℓ1 norm on
the coefficients in a representation of the function f by elements of a normalized dictionary
of ridge functions. A classic result of Barron (1993) shows that, for any function f defined
on X = [0,1]p, we have the bound ∥ f ∥L1 ≲

∫
∥θ∥ℓ1 | f̃ (θ)|dθ, where f̃ is the Fourier transform

of f and ∥ · ∥ℓ1 is the usual ℓ1 norm of a vector in Rp. Furthermore, there exists an M-term
linear combination of sigmoidal ridge functions in G whose L2(Px) distance from f is
O
(
∥ f ∥L1/

√
M

)
.

2.2. Computational Framework. As mentioned earlier, it is challenging to find the direction
â that optimizes ∆̂(b,a, t). Many of the aforementioned computational papers address the
problem by restricting the search space to a more tractable subset of candidate directionsAt
with sparsity

sup{∥a∥ℓ0 : a ∈At} ≤ d,

for some positive integer d, where ∥a∥ℓ0 counts the number of nonzero coordinates of a.
Because such search strategies are sometimes unlikely to find the global maximum, we
theoretically measure their success by specifying a sub-optimality (slackness) parameter κ ∈
(0,1] and considering the probability PAt(κ) that the maximum of ∆̂(b,a, t) over a ∈At ⊆ R

p

is within a factor κ of the maximum of ∆̂(b,a, t) on the unrestricted parameter space, a ∈ Rp.
That is, to theoretically quantify the sub-optimality of the chosen hyperplane, we measure

PAt(κ) = PAt

(
max

(b,a)∈R×At

∆̂(b,a, t) ≥ κ max
(b,a)∈R1+p

∆̂(b,a, t)
)
,

where PAt denotes the probability with respect to the randomness in the search spaces At,
conditional on the data. The maximum of ∆̂(b,a, t) over (b,a) is achieved because the number
of distinct values of ∆̂(b,a, t) is finite (at most the number of ways of dividing n observations
into two groups, or, 2n − 1).

Another way of thinking about PAt(κ) is that it represents the degree of optimization misspeci-
ficity ofAt for the form of the global optimum â. For example, ifAt = {e1, e2, . . . , ep} is the
collection of standard basis vectors in Rp, then d = 1 and we believe that the true optimal
solution â ∈At corresponds to axis-aligned CART, then PAt (κ) = 1 for all values of κ.

The definition of PAt(κ) can also be understood as a hypothesis test. Consider the regression
model y = β11(aTx ≤ b)+ β21(aTx > b)+ ε with independent Gaussian noise ε ∼ N(0,σ2). Set
the null hypothesis H0 : â ∈At. Then, using the likelihood ratio test with threshold proportional
to 1 − κ, PAt(κ) is the likelihood of failing to reject the null hypothesis. It follows that the
smaller κ is, the more likely it is that we will reject the null hypothesis that â belongs toAt.

The collectionAt of candidate directions can be chosen in many different ways; we discuss
some examples next.

2.3 Orthogonal Tree Expansions 7

• Deterministic. IfAt is nonrandom, then PAt(κ) is either zero or one for anyAt ⊂ R
p, and

ifAt = R
p, then PAt(κ) = 1 for all κ ∈ (0,1]. For the latter case, one can use strategies based

on mixed-integer optimization (MIO) Zhu et al. (2020); Dunn (2018); Bertsimas and Dunn
(2017). In particular, Dunn (2018) presents a global MIO formulation for regression trees
with squared error that can also be implemented greedily within each node. Separately, in
order to improve interpretability, it may be of interest to restrict the coordinates of â to be
integers. Using the hyperplane separation theorem and the fact that constant multiples of
vectors in Zp are dense in Rp, it can easily be shown that if At = Z

p, then PAt(κ) = 1 for
all κ ∈ (0,1]. An integer-valued search space may also lend itself to optimization strategies
based on integer programming.

• Purely random. The most naïve and agnostic way to construct At is to generate the
directions uniformly at random. For example, with axis-aligned CART where the global
search space consists of the p standard basis vectors {e1, e2, . . . , ep}, ifAt is generated by
selecting m (≤ p) standard basis vectors uniformly at random without replacement (as is
done with random forests (Breiman, 2001)), then PAt(κ) ≥

(
p−1
m−1

)
/
(

p
m

)
=m/p for all κ ∈ (0,1].

For more complex global search spaces (e.g., oblique), it is quite likely that a purely random
selection will yield very small PAt(κ). For example, if the global search space is {a ∈ Rp :
∥a∥ℓ0 = d} andAt is generated by selecting m (distinct) sets S k ⊂ {1,2, . . . , p} with |S k| = d
uniformly at random without replacement and setting At =

⋃
k{a ∈ Rp : a j = 0, j < S k},

then PAt(κ) ≥ m/
(

p
d

)
≈ 0 for all κ ∈ (0,1]. This has direct consequences for the predictive

performance, since, as we shall see (Section 2.4), the expected risk is inflated by the
reciprocal probability 1/PAt(κ). Thus, generatingAt in a principled manner is important
for producing small risk.

• Data-dependent. Perhaps the most interesting and useful way of generating informative
candidate directions in At is to take a data-driven approach. One possibility is to use
dimensionality reduction techniques, such as PCA, LDA, and Lasso, on a separate sample
{(ỹi, x̃T

i) : x̃i ∈ t}. The search space At can then be defined in terms of the top principle
components produced by PCA or LDA, or, similarly, in terms of the relevant coordinates
selected by Lasso. Additional randomization can also be introduced by incorporating,
for example, sparse random projections or random rotations (Tomita et al., 2020). On an
intuitive level, we expect these statistical methods that aim to capture variance in the data to
produce good optimizers of the objective function. Indeed, empirical studies with similar
constructions provide evidence for their efficacy over purely random strategies (Ghosh et al.,
2021; Menze et al., 2011; Rodriguez, Kuncheva and Alonso, 2006).

In order to control the predictive performance of the decision tree theoretically, we assume the
researcher has chosen a meaningful method for selecting candidate directionsAt, either with
prior knowledge based on the context of the problem, or with an effective data-driven strategy.

2.3. Orthogonal Tree Expansions. We now present a technical result about the construction
of trees that is crucial in proving our main results. While Lemma 2.1 below focuses on the
special case of constant fit at the terminal nodes for concreteness, all proofs in Appendix A
are given in full generality. To be more precise, our results in the appendix allow for any
finite-dimensional least squares fit at the terminal nodes, and thus give a general orthogonal
tree expansion in the function space for adaptive oblique decision trees, covering canonical
adaptive axis-aligned decision trees as a special case.

Lemma 2.1 shows that the tree output µ̂(T)(x) is equal to the empirical orthogonal projection
of y onto the linear span of orthonormal decision stumps, defined as

(3) ψt(x) =
1(x ∈ tL)n(tR) − 1(x ∈ tR)n(tL)

√
w(t)n(tL)n(tR)

,

8 2 MAIN RESULTS

for internal nodes t ∈ [T], where w(t) = n(t)/n denotes the proportion of observations that are
in t. By slightly expanding the notion of an internal node to include the empty node (i.e.,
the empty set), we define ψt(x) ≡ 1 if t is the empty node, in which case the tree outputs the
grand mean of all the response values. The decision stump ψt in (3) is produced from the
Gram–Schmidt orthonormalization of the functions {1(x ∈ t),1(x ∈ tL)} with respect to the
empirical inner product space:{

1(x ∈ t)
∥1(x ∈ t)∥n

,
1(x∈tL)− ⟨1(x∈tL),1(x∈t)⟩n

∥1(x∈t)∥2n
1(x∈t)∥∥∥1(x∈tL)− ⟨1(x∈tL),1(x∈t)⟩n

∥1(x∈t)∥2n
1(x∈t)

∥∥∥
n

}
=

{
1(x ∈ t)
√

w(t)
,
1(x ∈ tL)n(tR) − 1(x ∈ tR)n(tL)

√
w(t)n(tL)n(tR)

}
.

We refer the reader to Appendix A for an orthonormal decomposition of the tree output that
holds in a much more general setting (i.e., when the node output is the least squares projection
onto the linear span of a finite dictionary).

Lemma 2.1. If T is a decision tree constructed with CART methodology (either axis-aligned
or oblique), then its output (2) admits the orthogonal expansion

(4) µ̂(T)(x) =
∑
t∈[T]

⟨y,ψt⟩nψt(x),

where ψt = (ψt(x1), . . . , ψt(xn))T. By construction, ∥ψt∥n = 1 and ⟨ψt,ψt′⟩n = 0 for distinct
internal nodes t and t′ in [T]. In other words, µ̂(T) is the empirical orthogonal projection of y
onto the linear span of {ψt}t∈[T]. Furthermore,

(5) |⟨y,ψt⟩n|
2 = ∆̂(b̂, â, t).

Remark 1 (Connection to Sieve Estimation Literature). Another way of thinking about
CART is through the lens of least squares sieve estimation. For example, for a fixed but
otherwise arbitrary ordering of the internal nodes of T , suppose Ψ is the n × |[T]| data matrix
[ψt(xi)]1≤i≤n, t∈[T] and Ψ(x) is the |[T]| × 1 feature vector (ψt(x))t∈[T]. Then,

µ̂(T)(x) =Ψ(x)T(ΨTΨ)−1ΨTy =Ψ(x)TΨTy.

From this perspective, standard sieve estimation and inference theory (Huang, 2003; Cattaneo,
Farrell and Feng, 2020) cannot be applied to studying the statistical properties of µ̂(T)(x)
because the implied (random) basis functions depend on the entire sample (y,X) through the
adaptive (recursive) split regions underlying the decision tree construction (i.e., the induced
random partitioning).

Lemma 2.1 suggests that there may be some connections between oblique CART and sequen-
tial greedy optimization in Hilbert spaces. Indeed, our analysis of the oblique CART algorithm
suggests that it can be viewed as a local orthogonal greedy procedure in which one iteratively
projects the data onto the space of all constant predictors within a greedily obtained node. The
algorithm also has similarities to forward-stepwise regression because, at each current node t,
it grows the tree by selecting a feature, ψt, most correlated with the residuals, (yi − yt)1(xi ∈ t),
per (5) and (1), and then adding that chosen feature along with its coefficient back to the tree
output in (4).

The proofs show that this local greedy approach has a very similar structure to standard global
greedy algorithms in Hilbert spaces. Indeed, the reader familiar with greedy algorithms in
Hilbert spaces for over-complete dictionaries will recognize some similarities in the analysis
(see the orthogonal greedy algorithm (Barron et al., 2008) in which one iteratively projects the

2.4 Training Error Bound for Oblique CART 9

data onto the linear span of a finite collection of greedily obtained dictionary elements). As with
all orthogonal expansions, the decomposition of µ̂(TK) in Lemma 2.1 allows one to write down
a recursive expression for the training error. That is, from µ̂(TK) = µ̂(TK−1)+

∑
t∈TK−1

⟨y,ψt⟩nψt,
one obtains the identity

(6) ∥y − µ̂(TK)∥2n = ∥y − µ̂(TK−1)∥2n −
∑

t∈TK−1

|⟨y,ψt⟩n|
2.

Furthermore, using the fact that ⟨y,ψt⟩n is the result of a local maximization, viz., the equiva-
lence (5) in Lemma 2.1, one can construct an empirical probability measure Π on (b,a) and
lower bound |⟨y,ψt⟩n|

2 by
∫
∆̂(b,a, t)dΠ(b,a), which is itself further lower bounded by an

appropriately scaled squared node-wise excess training error. These inequalities (formalized
and proven in Appendix B) can be combined with (6) to provide a useful training error bound.
We formally present this result next.

2.4. Training Error Bound for Oblique CART. Applying the techniques outlined earlier,
we can show the following result (Lemma 2.2) on the training error of the tree. Our result
provides an algorithmic guarantee, namely, that the expected excess training error of a depth
K tree constructed with oblique CART methodology decays like 1/K, and, with additional
assumptions (see Section 3), like 4−K/q for some q > 2. To the best of our knowledge, this
result is the first of its kind for oblique CART. The math behind it is surprisingly simple;
in particular, unlike past work on axis-aligned decision trees, there is no need to directly
analyze the partition that is induced by recursively splitting, which often entails showing that
certain local (i.e., node-specific) empirical quantities concentrate around their population level
versions (Scornet, Biau and Vert, 2015; Wager and Athey, 2018; Syrgkanis and Zampetakis,
2020; Chi et al., 2022).

For the following statements, the output of a depth K tree TK constructed with oblique CART
methodology using the search spaces {At : t ∈ [T]} is denoted µ̂(TK). Throughout the paper, we
use E to denote the expectation with respect to the joint distribution of the (possibly random)
search spaces {At : t ∈ [TK]} and the data.

Lemma 2.2 (Training error bound for oblique CART). Let E[y2 log(1 + |y|)] <∞ and g ∈ F
with ∥g∥L1 <∞. Then, for any K ≥ 1,

(7) E
[
∥y − µ̂(TK)∥2n

]
≤ E

[
∥y − g∥2n

]
+
∥g∥2
L1
E
[
maxt∈[TK] P−1

At
(κ)

]
κK

.

For this result to be non-vacuous, the only additional assumption needed is that the largest
of the reciprocal probabilities, P−1

At
(κ), are integrable with respect to the data and (possibly

random) search spaces. A simple sufficient condition is that the splitting probabilities are
almost surely bounded away from zero, which we record in the following assumption for
future reference.

Assumption 1 (Non-zero splitting probabilities). The splitting probabilities are uniformly
bounded away from zero. That is,

inf
n≥1

inf
t∈[Tmax]

PAt(κ) > 0 a.s.

Section 2.2 discusses optimization algorithms/approaches that would satisfy Assumption 1,
and, more generally, that would guarantee E

[
maxt∈[TK] P−1

At
(κ)

]
<∞.

10 2 MAIN RESULTS

2.5. Pruning. Without proper tuning of the depth K, the tree TK can very easily become
overly complicated, causing its output µ̂(TK)(x) to generalize poorly to unseen data. While
one could certainly select good choices of K via a holdout method, in practice, complexity
modulation is often achieved through pruning. We first introduce some additional concepts,
and then go on to describe such a procedure.

We say that T is a pruned subtree of T ′, written as T ⪯ T ′, if T can be obtained from T ′ by
iteratively merging any number of its internal nodes. A pruned subtree of Tmax is defined
as any binary subtree of Tmax having the same root node as Tmax. Recall that the number of
terminal nodes in a tree T is denoted |T |. As shown in Breiman et al. (1984, Section 10.2), the
smallest minimizing subtree for the penalty coefficient λ = λn ≥ 0,

(8) Topt ∈ argmin
T⪯Tmax

{
∥y − µ̂(T)∥2n + λ|T |

}
,

exists and is unique (smallest in the sense that if Topt optimizes the penalized risk of (8), then
Topt ⪯ T for every pruned subtree T of Tmax). For a fixed λ, the optimal subtree Topt can be
found efficiently by weakest link pruning, i.e., by successively collapsing the internal node that
decreases ∥y − µ̂(T)∥2n the most, until we arrive at the single-node tree consisting of the root
node. This method enumerates a finite list of trees for which the objective function can then be
evaluated to find the optimal subtree. Good values of λ can be selected using cross-validation
on a holdout subset of data, for example. See Mingers (1989) for a description of various
pruning algorithms.

We now present our main consistency and convergence rate results for both pruned and
un-pruned oblique trees.

2.6. Oracle Inequality for Oblique CART. Our main result establishes an adaptive prediction
risk bound (also known as an oracle inequality) for oblique CART under model misspecifi-
cation; that is, when the true model may not belong to F . Essentially, the result shows that
oblique CART performs almost as if it was finding the best approximation of the true model
with ridge expansions, while accounting for the goodness-of-fit and descriptive complexity
relative to sample size. To bound the integrated mean squared error (IMSE), the training error
bound from Lemma 2.2 is coupled with tools from empirical process theory (Györfi et al.,
2002) for studying partition-based estimators.

Our results rely on the following assumption regarding the data generating process.

Assumption 2 (Exponential tails of the conditional response variable). The conditional
distribution of y given x has exponentially decaying tails. That is, there exist positive constants
c1, c2, γ, and M, such that for all x ∈ X,

P(|y| > B+M | x) ≤ c1 exp(−c2Bγ), B ≥ 0.

In particular, note that γ = 1 for sub-Exponential data, γ = 2 for sub-Gaussian data, and γ =∞
for bounded data. Using the layer cake representation for expectations, i.e., |µ(x)| ≤ E[|y| | x] =∫ ∞

0 P(|y| ≥ z | x)dz, Assumption 2 implies that the conditional mean is uniformly bounded:

(9) sup
x∈X
|µ(x)| ≤ M + c1

∫ ∞
0 exp(−c2zγ)dz = M′ <∞.

2.6 Oracle Inequality for Oblique CART 11

Theorem 2.3 (Oracle inequality for oblique trees). Let Assumption 2 hold. Then, for any
K ≥ 1,

(10)

E
[
∥µ − µ̂(TK)∥2

]
≤ 2 inf

f∈F

{
∥µ − f ∥2 +

∥ f ∥2
L1
E
[
maxt∈[TK] P−1

At
(κ)

]
κK

+C
2Kd log(np/d) log4/γ(n)

n

}
,

where C =C(c1, c2, γ,M) is a positive constant. Furthermore, if the penalty coefficient satisfies
λn ≳ (d/n) log(np/d) log4/γ(n), then

(11)

E
[
∥µ − µ̂(Topt)∥2

]
≤ 2 inf

K≥1, f∈F

{
∥µ − f ∥2 +

∥ f ∥2
L1
E
[
maxt∈[TK] P−1

At
(κ)

]
κK

+C
2Kd log(np/d) log4/γ(n)

n

}
.

Consistency of oblique trees follows from Theorem 2.3 under the additional assumption that
the splitting probabilities are bounded away from zero (Assumption 1) and that the depth K
grows appropriately with the sample size.

Corollary 2.4 (Consistency for fixed dimension). Let Assumptions 1 and 2 hold. If K ≍ log n,
then

lim
n→∞
E
[
∥µ − µ̂(TK)∥2

]
= 0,

and if the penalty coefficient satisfies λn ≳ (d/n) log(np/d) log4/γ(n), then

lim
n→∞
E
[
∥µ − µ̂(Topt)∥2

]
= 0.

While Corollary 2.4 shows that oblique trees are consistent for fixed dimension p, it does not
provide a rate of convergence. Under a few additional assumptions, however, Theorem 2.3
implies that the oblique tree is consistent with a logarithmic rate of convergence even when
the dimension grows with the sample size.

Corollary 2.5 (Consistency for possibly growing dimension). Let Assumptions 1 and 2 hold
and suppose {µn} is a sequence of regression functions that belong to F with supn ∥µn∥L1 <∞.
Assume furthermore that d = p =O(n1−ξ) for some ξ ∈ (0,1). If K ≍ log n, then

E
[
∥µn − µ̂(TK)∥2

]
=O

(
(log n)−1),

and if the penalty coefficient satisfies λn ≳ (d/n) log(np/d) log4/γ(n), then

E
[
∥µn − µ̂(Topt)∥2

]
=O

(
(log n)−1).

The results also hold trivially if d and p are fixed.

Remark 2 (Connection to adaptive axis-aligned decision trees). By considering elements of
G with ak = ek (the standard basis vectors in Rp) and M = p, we recover the additive library

F add =

{
f (x) =

p∑
j=1

f j(x j) : f j : R 7→ R
}
.

12 3 FAST CONVERGENCE RATES

Additive models have played an important role in the development of theory for CART. For
example, Scornet, Biau and Vert (2015) show consistency of axis-aligned CART for fixed
dimensional additive models. More recent work has tried to illustrate the adaptive properties
of axis-aligned CART on sparse additive models with growing dimensionality (Chi et al.,
2022; Klusowski and Tian, 2022; Klusowski, 2020; Syrgkanis and Zampetakis, 2020), some of
which can be recovered as a special case of our more general theory. To see this, note that
global optimization of the splitting criterion (1) is feasible with axis-aligned CART (d = 1) and
hence κ = 1 and PAt(κ) = 1. Then, according to (11), since d = 1, the pruned tree estimator is
consistent for regression functions in the class F add even in the so-called NP-dimensionality
regime, where log(p) = O(n1−ξ) for some ξ ∈ (0,1). This result was previously established
in Klusowski and Tian (2022) for axis-aligned CART.

These sort of high dimensional consistency guarantees are not possible with non-adaptive
procedures that do not automatically adjust the amount of smoothing along a particular
dimension according to how much the covariate affects the response variable. Such procedures
perform local estimation at a query point using data that are close in every single dimension,
making them prone to the curse of dimensionality even if the true model is sparse (typical
minimax rates (Györfi et al., 2002) necessitate that p must grow at most logarithmically
in the sample size to ensure consistency). This is the case with conventional multivariate
(Nadaraya-Watson or local polynomial) kernel regression in which the bandwidth is the same
for all directions, or k-nearest neighbors with Euclidean distance.

3. Fast Convergence Rates. When the model is well-specified and the response values are
bounded (i.e., γ =∞), as Corollary 2.5 illustrates, the oracle inequality in (10) yields relatively
slow rates of convergence. Because shallow oblique trees often compete empirically with
wide neural networks (Bertsimas, Mazumder and Sobiesk, 2018; Bertsimas and Dunn, 2019;
Bertsimas and Stellato, 2021), a proper mathematical theory should reflect such qualities. It
is therefore natural to compare these rates with the significantly better rn =

√
(p/n) log(n)

rates for similar function libraries, achieved by neural networks (Barron, 1994). In both cases,
the prediction risk converges to zero if p = o(n/ log(n)) (or equivalently, if rn = o(1)), but the
speed differs from logarithmic to polynomial. It is unclear whether the logarithmic rate for
oblique CART is optimal in general. We can, however, obtain comparable rates to neural
networks by granting two assumptions. Importantly, these assumptions only need to hold on
average (with respect to the joint distribution of the data and the search sets) and not almost
surely for all realizations of the trees. Because most papers that study the convergence rates of
neural network estimators proceed without regard for computational complexity, to ensure a
fair comparison, we will likewise assume here that d = p, κ = 1, and PAt(κ) = 1 (i.e., direct
optimization of (1)).

Our first additional assumption puts a global ℓq constraint on the local L1 total variations
of the regression function µ across all terminal nodes of TK . This is a type of regularity
condition on both the tree partition of X and the regression function µ. It ensures a degree of
compatibility between the non-additive tree model and the additive form of the regression
function. In particular, if there existed an (oblique) tessellation of the input space such that the
target function is piecewise constant, then the following assumption would hold trivially (i.e.,
the approximation model is correctly specified). The assumption more generally disciplines
the degree of misspecification in globally approximating the unknown target conditional
expectation function when employing adaptive oblique tree methods.

13

Assumption 3 (Aggregated ℓq variation). The regression function µ belongs to F and there
exist positive numbers V and q > 2 such that, for any K ≥ 1,

(12) E

[∑
t∈TK

∥µ∥
q
L1(t)

]
≤ Vq.

For fixed K and finite ∥µ∥L1 , there is always some choice of V and q for which (12) is satisfied
since

lim sup
q→∞

(
E

[∑
t∈TK

∥µ∥
q
L1(t)

])1/q

≤ E

[
max
t∈TK
∥µ∥L1(t)

]
≤ ∥µ∥L1 ,

and hence, for example, E
[∑

t∈TK
∥µ∥

q
L1(t)

]
≤ (2∥µ∥L1)q for q large enough, but finite. However,

this alone is not enough to validate Assumption 3 because q may depend on the sample size
through its dependence on the depth K = Kn. Hence, it is important that (12) hold for the same
q uniformly over all depths.

It turns out that Assumption 3 can be verified to hold for V = ∥µ∥L1 and all q > 2 when
p = 1. To see this, recall that I(a, t) = [minx∈t aTx, maxx∈t aTx]. Because the collection of
terminal nodes {t : t ∈ TK} forms a partition of X, when p = 1, so does {I(a, t) : t ∈ TK} for
I(a,X) = [minx∈X aTx, maxx∈X aTx]. Thus, the L1 total variation is additive over the nodes,
i.e.,

∑
t∈TK
∥µ∥L1(t) = ∥µ∥L1 , in which case,∑

t∈TK

∥µ∥
q
L1(t) ≤ ∥µ∥

q
L1
, q ≥ 1.

In general, for p > 1, a crude and not very useful bound is
∑

t∈TK
∥µ∥

q
L1(t) ≤ 2K∥µ∥

q
L1

; however,
the average size of

∑
t∈TK
∥µ∥

q
L1(t) will often be smaller because it depends on the specific

geometry of the tree partition of X, which captures heterogeneity in the regression function
µ. More specifically, the size will depend on how the intervals I(a, t) overlap across t ∈ TK
as well as how much µ varies within each terminal node. We do not expect q to exceed the
dimension p, provided that µ is smooth. This is because, by smoothness, ∥µ∥L1(t), a proxy for
the oscillation of µ in the node is also a proxy for the diameter of the node. Then, because
the nodes are disjoint convex polytopes, on average, we expect ∥µ∥p

L1(t) to be a proxy for their
volume (i.e., their p-dimensional Lebesgue measure), in which case, E

[∑
t∈TK
∥µ∥

p
L1(t)

]
is a

constant multiple of the volume of X.

Our final additional assumption puts a moment bound on the maximum number of observations
that any one node can contain. Essentially, it says that the Lν norm of maxt∈TK n(t) is bounded
by a multiple of the average number of observations per node.

Assumption 4 (Node size moment bound). Let q > 2 be the positive number from Assumption
3. There exist positive numbers A and ν ≥ 1 + 2/(q − 2) such that, for any K ≥ 1,(

E
[(

max
t∈TK

n(t)
)ν])1/ν

≤
An
2K .

Our risk bounds below show that A = An is permitted to grow poly-logarithmically with the
sample size, without affecting the rate of convergence. Because

E
[
max
t∈TK

n(t)
]
≤

(
E
[(

max
t∈TK

n(t)
)ν])1/ν

,

14 3 FAST CONVERGENCE RATES

and there are at most 2K disjoint regions t in the partition of X induced by the tree at
depth K such that

∑
t∈TK

n(t) = n, Assumption 4 implies that, on average, no region contains
disproportionately more observations than the average number of observations per region,
i.e., n/2K . Importantly, it still allows for situations where some regions contain very few
observations, which does tend to happen in practice. For example, if n = 1000, K = 2, and
T2 has four terminal nodes with n(t) ∈ {5,5,495,495}, then maxt∈TK n(t) ≤ An/2K holds with
A = 2.

Previous work by Bertsimas, Mazumder and Sobiesk (2018) and Bertsimas and Dunn (2019)
showed that feed-forward neural networks with Heaviside activations can be transformed into
oblique decision trees with the same training error. While these tree representations of neural
networks require significant depth (the depth of the tree in their construction is at least the
width of the target network), they nonetheless demonstrate a proof-of-concept that supports
their extensive empirical investigations showing that the modeling power of oblique decision
trees is similar to neural networks, even if the trees have modest depth (K ≤ 8). Our work not
only complements these past studies, it also addresses some of the scalability issues associated
with global optimization by theoretically validating greedy implementations.

Lemma 3.1. Let d = p, κ = 1, and PAt(κ) = 1, and let Assumptions 3 and 4 hold, and assume
E[y2 log(1 + |y|)] <∞. Then, for any K ≥ 1,

(13) E
[
∥y − µ̂(TK)∥2n

]
≤ E

[
∥y − µ∥2n

]
+

AV2

4(K−1)/q .

Theorem 3.2. Let d = p, κ = 1, and PAt(κ) = 1, and let Assumptions 2, 3, and 4 hold. Then,
for any K ≥ 1,

(14) E
[
∥µ − µ̂(TK)∥2

]
≤

2AV2

4(K−1)/q +C
2K+1 p log4/γ+1(n)

n
,

where C =C(c1, c2, γ,M) is a positive constant. Furthermore, if the penalty coefficient satisfies
λn ≳ (p/n) log4/γ+1(n), then

(15) E
[
∥µ − µ̂(Topt)∥2

]
≤ 2(2 + q)

(
AV2

q

)q/(2+q)(Cp log4/γ+1(n)
n

)2/(2+q)

.

As mentioned earlier, we see from (15) that A = An (as well as V = Vn) is allowed to grow poly-
logarithmically without affecting the convergence rate. When the response values are bounded
(i.e., γ =∞), the pruned tree estimator µ̂(Topt) achieves the rate r2/(2+q)

n = ((p/n) log(n))2/(2+q),
which, when q ≈ 2, is nearly identical to the

√
rn rate in Barron (1994) for neural network

estimators of regression functions µ ∈ F with ∥µ∥L1 <∞. While we make two additional
assumptions (Assumptions 3 and 4) in order for oblique CART to achieve full modeling
power on par with neural networks, our theory suggests that decision trees might be preferred
in applications where interpretability is valued, without suffering a major loss in predictive
accuracy. We also see from these risk bounds that q plays the role of an effective dimension,
since it—and not the ambient dimension p—governs the convergence rates. As we have
argued above, if µ is smooth, then q should be at most p, and so the convergence rate in (15)
should always be at least as fast as the minimax optimal rate (1/n)2/(2+p) for smooth functions
in p dimensions.

15

4. Oblique Random Forests. A random forest is a randomized ensemble of trees. While
traditional random forests use axis-aligned trees, it is also possible to work with oblique trees.

The randomization mechanism in a random forest affects the way each tree is constructed, and
consists of two parts. The first part generates a subsample without replacement of size N < n
from the original training data, on which the tree is trained, and the second part generates a
random collection of candidate splitting directions at each node, from which the optimal one
is chosen (see the discussion under the purely random heading in Section 2 for generatingAt).

Let Θ denote the random variable whose law governs the aforementioned randomization
mechanism and let TK(Θ) be the associated maximal tree of depth K. Let Θ = (Θ1, . . . ,ΘB)T

denote B independent copies of Θ, corresponding to B trees TK(Θb), for b = 1, . . . ,B. The
output of the random forest at a point x is obtained by averaging the predictions of all B trees
in the forest, viz.,

µ̂(Θ)(x) =
1
B

B∑
b=1

µ̂(TK(Θb))(x).

By convexity of squared error loss, the expected risk can be bounded as follows:

E
[
∥µ − µ̂(Θ)∥2

]
≤

1
B

B∑
b=1

E
[
∥µ − µ̂(TK(Θb))∥2

]
= E

[
∥µ − µ̂(TK(Θ))∥2

]
.

The above bound, although crude, tells us that we should expect the random forest to perform
no worse than a single (random) tree.

4.1. Oracle inequality for oblique forests. We can now establish an oracle inequality for
oblique forests similar to that of Theorem 3.2. Conditional on the randomness due to the
indices I ⊂ {1, . . . ,n} of the original training data that belong to the subsampled training data,
µ̂(TK(Θb)) is a depth K oblique tree (with randomized splits) trained on N samples for each
draw b = 1, . . . ,B. This means that E

[
∥µ − µ̂(TK(Θb))∥2 | I

]
enjoys the exact same bounds in

Theorem 2.3 but with n replaced by the effective sample size |I| = N. We formalize this notion
in Theorem 4.1.

Theorem 4.1 (Oracle inequality for oblique forests). Suppose Assumptions 2 holds. Let µ̂(Θ)
be the output of the oblique random forest constructed with oblique trees of depth K. Then,

E
[
∥µ− µ̂(Θ)∥2

]
≤ 2 inf

f∈F

{
∥µ− f ∥2 +

∥ f ∥2
L1
E
[
maxt∈[TK] P−1

At
(κ)

]
κK

+C
2Kd log(N p/d) log4/γ(N)

N

}
,

where C is some positive constant and N is the subsample size.

While the efficacy of forests is not reflected in these risk bounds, they do show that forests
of oblique trees inherit the same desirable properties as single trees. It should be noted that
the expectation in the second term of the bound in Theorem 4.1 is over the subsampled
data (instead of over the entire data set as in Theorem 2.3). As such, for consistency results
similar to those in Corollary 2.4 and 2.5, the splitting probabilities would need to be almost
surely bounded away from zero (Assumption 1) for any realization of the subsampled data.
Additionally, with the stronger assumptions analogous results to Theorem 3.2 can also be
derived for oblique forests. We omit details to conserve space.

16 5 CONCLUSION AND FUTURE WORK

5. Conclusion and Future Work. We explored how oblique decision trees—which output
constant averages over polytopal partitions of the feature space—can be used for predictive
modeling with ridge expansions, sometimes achieving the same convergence rates as neural
networks. The theory presented here is encouraging as it implies that interpretable models
can exhibit provably good performance similar to their black-box counterparts such as neural
networks. The computational bottleneck still remains the main obstacle for practical imple-
mentation. Crucially, however, our risk bounds show that favorable performance can occur
even if the optimization is only done approximately. We conclude with a discussion of some
directions for potential future research.

5.1. Multi-layer Networks. We can go beyond approximating single-hidden layer neural
networks if instead the split boundaries of the oblique trees have the form aTΦ(x) = b, where
Φ is a multi-dimensional feature map, such as the output layer of a neural network. For
example, if Φk(x) = ϕ(aT

k x − bk), where ϕ is some activation function, then this additional
flexibility allows us to approximate two-hidden layer networks, i.e., functions of the form∑

k2
ck2ϕ(

∑
k1

ck1,k2ϕ(aT
k1,k2

x − bk1,k2)).

5.2. Classification. While we have focused on regression trees, oblique decision trees are
commonly applied to the problem of binary classification, i.e., yi ∈ {−1,1}. In this case, because
Gini impurity (Hastie, Tibshirani and Friedman, 2009; Breiman et al., 1984) is equivalent
to the squared error criterion (1), our results also directly apply to the classification setting
provided the conditional class probability η(x) = P(y = 1 | x) belongs to F and has finite ∥η∥L1 .
A more natural assumption when modeling probabilities, however, would be to have the
log-odds f (x) = log(η(x)/(1 − η(x))) belong to F and have finite ∥ f ∥L1 . In this case, we must
use another widely used splitting criterion, the information gain, namely, the amount by which
the binary entropy of the class probabilities in the node can be reduced from splitting the
parent node (Hastie, Tibshirani and Friedman, 2009; Quinlan, 1993):

IG(b,a, t) = H(t) −
n(tL)
n(t)

H(tL) −
n(tR)
n(t)

H(tR),

where H(t) = η(t) log(1/η(t)) + (1 − η(t)) log(1/(1 − η(t))) and η(t) = 1
n(t)

∑
xi∈t 1(yi = 1). In-

terestingly, maximizing the information gain in the node is equivalent to minimizing
the node-wise logistic loss with respect to the family of log-odds models of the form
θt(x) = β11(aTx ≤ b) + β21(aTx > b); that is,

(b̂, â) ∈ argmax
(b,a)

IG(b,a, t) ⇐⇒ (β̂1, β̂2, b̂, â) ∈ argmin
(β1,β2,b,a)

∑
xi∈t

log(1 + exp(−yiθt(xi))).

One can use techniques from Klusowski and Tian (2022), which exploits connections to
sequential greedy algorithms for other convex optimization problems (Zhang, 2003) (e.g., Log-
itBoost), to establish a training error bound (with respect to logistic loss) akin to Lemma 2.2.

Acknowledgments. The authors would like to thank Florentina Bunea, Sameer Deshpande,
Jianqing Fan, Yingying Fan, Jonathan Siegel, Bartolomeo Stellato, and William Underwood
for insightful discussions. The authors are particularly grateful to two anonymous reviewers
whose comments improved the quality of the paper.

Funding. MDC was supported in part by the National Science Foundation through SES-
2019432 and SES-2241575. JMK was supported in part by the National Science Foundation
through CAREER DMS-2239448, DMS-2054808, and HDR TRIPODS CCF-1934924.

17

APPENDIX A: PROOFS

The main text presented theory for oblique trees that output a constant (sample average) at
each node. Fortunately, most of our results hold in a much more general setting. In particular,
we can allow for the nodes to output ŷt ∈ argminh∈span(H)

∑
xi∈t(yi − h(xi))2, whereH is a finite

dimensional dictionary that contains the constant function. The proofs here deal with the
general case.

In what follows, we assume without loss of generality that the infimum in the definition of
∥ f ∥L1 for f ∈ F is achieved at some element g ∈ G, since otherwise, there exists g ∈ G with
∥ f − g∥ arbitrarily small and ∥g∥L1 arbitrarily close to ∥ f ∥L1 . We denote the supremum norm
of a function f :X 7→ R by ∥ f ∥∞ = supx∈X | f (x)|. Additionally, we slightly abuse notation by
taking y − ŷt to mean y − ŷt1, where 1 = (1, . . . ,1)T is the n × 1 vector of ones.

Proof of Lemma 2.1. Set Ut =
{
u(x)1(x ∈ tL) + v(x)1(x ∈ tR) : u, v ∈ span(H)

}
and consider

the closed subspace Vt =
{
v(x)1(x ∈ t) : v ∈ span(H)

}
. By the orthogonal decomposition

property of Hilbert spaces, we can express Ut as the direct sum Vt ⊕ V
⊥
t , where V⊥t =

{u ∈ Ut : ⟨u, v⟩n = 0, for all v ∈ Vt}. Let Ψt be any orthonormal basis for Vt that includes
w−1/2(t)1(x ∈ t), where we remind the reader that w(t) = n(t)/n. Let Ψ⊥t be any orthonormal
basis forV⊥t that includes the decision stump (3). We will show that

(16) µ̂(T)(x) =
∑
t∈[T]

∑
ψ∈Ψ⊥t

⟨y,ψ⟩nψ(x),

where {ψ ∈Ψ⊥t : t ∈ [T]} is an orthonormal dictionary, and, furthermore, that

(17)
∑
ψ∈Ψ⊥t

|⟨y,ψ⟩n|2 = ∆̂(b̂, â, t).

These identities are the respective generalizations of (4) and (5). Because ŷt(x) is the projection
of y onto Vt, it follows that ŷt(x) =

∑
ψ∈Ψt
⟨y,ψ⟩nψ(x). For similar reasons, ŷtL(x)1(x ∈ tL) +

ŷtR(x)1(x ∈ tR) =
∑
ψ∈Ψt∪Ψ

⊥
t
⟨y,ψ⟩nψ(x).

To prove the identity in (16) (and, as a special case, (4)), using the above expansions, observe
that for each internal node t,

(18)
∑
ψ∈Ψ⊥t

⟨y,ψ⟩nψ(x) = (ŷtL(x) − ŷt(x))1(x ∈ tL) + (ŷtR(x) − ŷt(x))1(x ∈ tR).

For each x ∈ X, let t0, t1, . . . , tK−1, tK = t be the unique path from the root node t0 to the terminal
node t that contains x. Next, sum (18) over all internal nodes and telescope the successive
internal node outputs to obtain

(19)
K−1∑
k=0

(ŷtk+1(x) − ŷtk (x)) = ŷtK (x) − ŷt0(x) = ŷt(x) − ŷ(x),

where ŷ ∈ argminh∈H
∑n

i=1(yi − h(xi))2. Combining (18) and (19), we have∑
t∈T

ŷt(x)1(x ∈ t) = ŷ(x) +
∑

t∈[T]\{t0}

∑
ψ∈Ψ⊥t

⟨y,ψ⟩nψ(x) =
∑
t∈[T]

∑
ψ∈Ψ⊥t

⟨y,ψ⟩nψ(x),

where we recall that the null node t0 is an internal node of T . Next, we show that {ψ ∈Ψ⊥t :
t ∈ [T]} is orthonormal. The fact that each ψ has unit norm, ∥ψ∥2n = 1, is true by definition.
If ψ,ψ′ ∈Ψ⊥t , then by definition, ⟨ψ,ψ′⟩n = 0. Let t and t′ be two distinct internal nodes and
suppose ψ ∈Ψ⊥t and ψ′ ∈Ψ⊥t′ . If t∩ t′ = ∅, then orthogonality between ψ and ψ′ is immediate,

18 A PROOFS

since ψ(x) · ψ′(x) ≡ 0. If t∩ t′ , ∅, then due to the nested property of the nodes, either t ⊆ t′ or
t′ ⊆ t. Assume without loss of generality that t ⊆ t′. Then ψ′, when restricted to x ∈ t, belongs
toVt, which also implies that ψ and ψ′ are orthogonal, since ψ ∈V⊥t .

Finally, the decrease in impurity identity (17) (and, as a special case, (5)) can be shown as
follows:

∆̂(b̂, â, t) =
1
n

∑
xi∈t

(yi − ŷt(xi))2 −
1
n

∑
xi∈t

(yi − ŷtL(xi)1(xi ∈ tL) − ŷtR(xi)1(xi ∈ tR))2

=

(
1
n

∑
xi∈t

y2
i −

∑
ψ∈Ψt

|⟨y,ψ⟩n|2
)
−

(
1
n

∑
xi∈t

y2
i −

∑
ψ∈Ψt∪Ψ

⊥
t

|⟨y,ψ⟩n|2
)

=
∑
ψ∈Ψ⊥t

|⟨y,ψ⟩n|2. ■

Throughout the remaining proofs, we will assume that there exists a positive constant Q ≥ 1

such that supx∈X |̂µ(T)(x)| ≤ Q ·
√

max1≤i≤n
1
i
∑i
ℓ=1 y2

ℓ
, almost surely. This assumption is drawn

from the bound

|ŷt(x)| ≤

√
max
1≤i≤n

1
i

∑
1≤ℓ≤i

y2
ℓ

√
w(t)

∑
ψ∈Ψt

ψ2(x),

which is established by first using the basis expansion for ŷt provided in the proof of Lemma 2.1
and the Cauchy-Schwarz inequality,

|ŷt(x)| =

∣∣∣∣∣∣ ∑
ψ∈Ψt

⟨y, ψ⟩nψ(x)

∣∣∣∣∣∣ ≤
√∑

ψ∈Ψt

|⟨y,ψ⟩n|2
√∑

ψ∈Ψt

ψ2(x),

and then, because {ψ : ψ ∈ Ψt} is orthonormal, employing Bessel’s inequality to obtain∑
ψ∈Ψt
|⟨y,ψ⟩n|2 ≤ n−1 ∑

xi∈t y2
i ≤ w(t) max1≤i≤n

1
i
∑i
ℓ=1 y2

ℓ . Thus, Q could be taken to equal (or be

an almost sure bound on) supx∈Xmaxt∈[T]

√
w(t)

∑
ψ∈Ψt

ψ2(x). In the conventional case where

the tree outputs a constant in each node, Ψt =
{
w−1/2(t)1(x ∈ t)

}
, and hence Q = 1. To ensure

that µ̂(T)(x) is square-integrable, i.e., E
[
supx∈X |̂µ(T)(x)|2

]
<∞, we merely need to check that

E
[
max1≤i≤n

1
i
∑i
ℓ=1 y2

ℓ

]
<∞. This follows easily from Doob’s maximal inequality for positive

sub-martingales (Durrett, 2019, Theorem 5.4.4), since E[y2 log(1 + |y|)] <∞ by assumption.

Proof of Lemmas 2.2 and 3.1. Define the excess training error as

RK = ∥y − µ̂(TK)∥2n − ∥y − g∥2n.

Define the squared node-wise norm and node-wise inner product as ∥f∥2t =
1

n(t)
∑

xi∈t(f (xi))2

and ⟨f,g⟩t = 1
n(t)

∑
xi∈t f (xi)g(xi), respectively. We define the node-wide excess training error as

RK(t) = ∥y − ŷt∥
2
t − ∥y − g∥2t .

We use this to rewrite the total excess training error as a weighted combination of the node-
wide excess train errors:

RK =
∑
t∈TK

w(t)RK(t), w(t) = n(t)/n,

19

where t ∈ TK means t is a terminal node of TK . From the orthogonal decomposition of the tree,
as given in (16), we have

(20) ∥y − µ̂(TK)∥2n = ∥y − µ̂(TK−1)∥2n −
∑

t∈TK−1

∑
ψ∈Ψ⊥t

|⟨y,ψ⟩n|2.

Subtracting ∥y − g∥2n on both sides of (20), and using the definition of RK , we obtain

(21) RK = RK−1 −
∑

t∈TK−1

∑
ψ∈Ψ⊥t

|⟨y,ψ⟩n|2.

Henceforth, we adopt the notation ETK [RK] to mean that the expectation is taken with respect
to the joint distribution of {At : t ∈ [TK]}, conditional on the data. We can assume E[RK] > 0
for all K ≥ 1, since otherwise, by definition of RK ,

E[RK] = E[∥y − µ̂(TK)∥2n − ∥y − g∥2n] ≤ 0,

which directly gives the desired result.

Using the law of iterated expectations and the recursive relationship obtained in (21),

(22) ETK [RK] = ETK−1[ETK |TK−1[RK]] = ETK−1[RK−1] − ETK−1

[
ETK |TK−1

[∑
t∈TK−1

∑
ψ∈Ψ⊥t

|⟨y,ψ⟩n|2
]]
.

By (17) and the sub-optimality probability, PA(t)(κ), we can rewrite the term inside the iterated
expectation in (22) as

(23)

∑
t∈TK−1

∑
ψ∈Ψ⊥t

|⟨y,ψ⟩n|2 =
∑

t∈TK−1

∆̂(b̂, â, t)

≥
∑

t∈TK−1

1
(
∆̂(b̂, â, t) ≥ κ max

(b,a)∈R1+p
∆̂(b,a, t)

)
∆̂(b̂, â, t)

≥ κ
∑

t∈TK−1

1
(
∆̂(b̂, â, t) ≥ κ max

(b,a)∈R1+p
∆̂(b,a, t)

)
max

(b,a)∈R1+p
∆̂(b,a, t).

Taking expectations of both sides of (23) with respect to the conditional distribution of TK
given TK−1, we have

(24)

ETK |TK−1

[∑
t∈TK−1

∑
ψ∈Ψ⊥t

|⟨y,ψ⟩n|2
]

≥ κ
∑

t∈TK−1

ETK |TK−1

[
1
(
∆̂(b̂, â, t) ≥ κ max

(b,a)∈R1+p
∆̂(b,a, t)

)
max

(b,a)∈R1+p
∆̂(b,a, t)

]
.

By definition of PA(t),

(25)

∑
t∈TK−1

ETK |TK−1

[
1
(
∆̂(b̂, â, t) ≥ κ max

(b,a)∈R1+p
∆̂(b,a, t)

)
max

(b,a)∈R1+p
∆̂(b,a, t)

]
=

∑
t∈TK−1

PAt(κ) max
(b,a)∈R1+p

∆̂(b,a, t)

≥
∑

t∈TK−1:RK−1(t)>0

PAt(κ) max
(b,a)∈R1+p

∆̂(b,a, t).

20 A PROOFS

In turn, by Lemma B.1,

(26)
∑

t∈TK−1:RK−1(t)>0

PAt(κ) max
(b,a)∈R1+p

∆̂(b,a, t) ≥
∑

t∈TK−1:RK−1(t)>0

w(t)
R2

K−1(t)

P−1
At

(κ)∥g∥2
L1(t)

,

and Lemma B.3,

(27)

∑
t∈TK−1:RK−1(t)>0

w(t)
R2

K−1(t)

P−1
At

(κ)∥g∥2
L1(t)

≥
(
∑

t∈TK−1:RK−1(t)>0 w(t)RK−1(t))2∑
t∈TK−1:RK−1(t)>0 w(t)P−1

At
(κ)∥g∥2

L1(t)

≥
(R+K−1)2∑

t∈TK−1
w(t)P−1

At
(κ)∥g∥2

L1(t)

,

where R+K−1 =
∑

t∈TK−1:RK−1(t)>0 w(t)RK−1(t) ≥ RK−1. Combining (24), (25), (26), and (27) and
plugging the result into (22), we obtain

ETK [RK] ≤ ETK−1[RK−1] − κETK−1

[
(R+K−1)2∑

t∈TK−1
w(t)P−1

At
(κ)∥g∥2

L1(t)

]
.

Using Lemma B.3 again, we have

ETK−1

[
(R+K−1)2∑

t∈TK−1
w(t)P−1

At
(κ)∥g∥2

L1(t)

]
≥

(ETK−1[R
+
K−1])2

ETK−1

[∑
t∈TK−1

w(t)P−1
At

(κ)∥g∥2
L1(t)

] .
We have therefore derived the recursion

(28) ETK [RK] ≤ ETK−1[RK−1] − κ
(ETK−1[R

+
K−1])2

ETK−1

[∑
t∈TK−1

w(t)P−1
At

(κ)∥g∥2
L1(t)

] .
Next, let us take the expectation of both sides of (28) with respect to the data, apply Lemma B.3
once again, and use the fact that R+K−1 ≥ RK−1 and E[RK−1] > 0 to obtain

E[RK] ≤ E[RK−1] − κE
[

(ETK−1[R
+
K−1])2

ETK−1

[∑
t∈TK−1

w(t)P−1
At

(κ)∥g∥2
L1(t)

]]

≤ E[RK−1] − κ
(E[R+K−1])2

E
[∑

t∈TK−1
w(t)P−1

At
(κ)∥g∥2

L1(t)

]
≤ E[RK−1] − κ

(E[RK−1])2

E
[∑

t∈TK−1
w(t)P−1

At
(κ)∥g∥2

L1(t)

] .
We have therefore obtained a recursion for E[RK], which we can now solve thanks to
Lemma B.2. Setting ak = E[Rk] and bk = κ/E

[∑
t∈Tk−1

w(t)P−1
At

(κ)∥g∥2
L1(t)

]
in Lemma B.2, we

have

(29) E[RK] ≤
1

κ
∑K

k=1 1/E
[∑

t∈Tk−1
w(t)P−1

At
(κ)∥g∥2

L1(t)
] .

The next part of the proof depends on the assumptions we make about w(t), PAt(κ), and ∥g∥2
L1(t)

and how they enable us to upper bound

E

[∑
t∈TK−1

w(t)P−1
At

(κ)∥g∥2L1(t)

]
.

21

For Lemma 2.2: In this case, we do not impose any assumptions on w(t). We can use the fact
that

∑
t∈TK−1

w(t) = 1 and ∥g∥2
L1(t) ≤ ∥g∥

2
L1

for all t ∈ TK−1 to get

E

[∑
t∈TK−1

w(t)P−1
At

(κ)∥g∥2L1(t)

]
≤ ∥g∥2L1

E

[
max
t∈TK−1

P−1
At

(κ)
∑

t∈TK−1

w(t)
]

= ∥g∥2L1
E
[

max
t∈TK−1

P−1
At

(κ)
]

≤ ∥g∥2L1
E
[

max
t∈[TK]

P−1
At

(κ)
]
.

Plugging this bound into (29), we obtain the desired inequality in (7) on the expected excess
training error, namely,

E[RK] ≤
∥g∥2
L1
E
[
maxt∈[TK] P−1

At
(κ)

]
κK

.

For Lemma 3.1: If we grant Assumptions 3 and 4, and take g = µ ∈ G, we can arrive at a
stronger bound. Recall that we also assume that κ = 1 and PAt(κ) = 1. Since q > 2, by two
successive applications of Hölder’s inequality, we have

(30)
∑

t∈TK−1

w(t)∥µ∥2L1(t) ≤

(∑
t∈TK−1

(w(t))q/(q−2)
)1−2/q(∑

t∈TK−1

∥µ∥
q
L1(t)

)2/q

,

and

(31)

E

[(∑
t∈TK−1

(w(t))q/(q−2)
)1−2/q(∑

t∈TK−1

∥µ∥
q
L1(t)

)2/q]

≤

(
E

[∑
t∈TK−1

(w(t))q/(q−2)
])1−2/q(

E

[∑
t∈TK−1

∥µ∥
q
L1(t)

])2/q

.

Combining the two inequalities (30) and (31), we obtain

E

[∑
t∈TK−1

w(t)∥µ∥2L1(t)

]
≤

(
E

[∑
t∈TK−1

(w(t))q/(q−2)
])1−2/q(

E

[∑
t∈TK−1

∥µ∥
q
L1(t)

])2/q

.

Assumptions 3 and 4 provide further upper bounds, since(
E

[∑
t∈TK−1

(w(t))q/(q−2)
])1−2/q(

E

[∑
t∈TK−1

∥µ∥
q
L1(t)

])2/q

≤

(
2K−1E

[(
max
t∈TK−1

w(t)
)q/(q−2)])1−2/q(

E

[∑
t∈TK−1

∥µ∥
q
L1(t)

])2/q

≤ 2(K−1)(1−2/q)
(
E

[(
max
t∈TK−1

w(t)
)ν])1/ν(

E

[∑
t∈TK−1

∥µ∥
q
L1(t)

])2/q

≤
AV2

4(K−1)/q .

Plugging this bound into (29), we obtain the desired inequality (13) on the expected excess
training error, namely, E[RK] ≤ AV2

4(K−1)/q . ■

22 A PROOFS

Proof of Theorems 2.3 and 3.2. We begin by splitting the MSE (averaging only with respect
to the joint distribution of {At : t ∈ [Tk]}) into two terms, ETk

[
∥µ − µ̂(Tk)∥2

]
= E1 + E2, where

E1 = ETk

[
∥µ − µ̂(Tk)∥2

]
− 2

(
ETK

[
∥y − µ̂(Tk)∥2n

]
− ∥y − µ∥2n

)
− α(n, k) − β(n)

E2 = 2
(
ETk

[
∥y − µ̂(Tk)∥2n

]
− ∥y − µ∥2n

)
+ α(n, k) + β(n),

and where α(n, k) and β(n) are positive sequences that will be specified later.

To bound E[E1], we split our analysis into two cases based on the observed data yi. Accordingly,
we have

(32) E[E1] = E[E11(∀i : |yi| ≤ B)] + E[E11(∃i : |yi| > B)], B ≥ 0.

Bounded term. We start by looking at the first term on the right hand side of (32).

Proceeding, we introduce a few useful concepts and definitions for studying data-dependent
partitions, due to Nobel (1996). Let

Λn,k =
{
P({(ỹ1, x̃T

1), . . . , (ỹn, x̃T
n)}) : (ỹi, x̃T

i) ∈ R1+p}
be the family of all achievable partitions P by growing a depth k oblique decision tree on n
data points with split boundaries of the form xTa = b, where ∥a∥ℓ0 ≤ d. In particular, note that
Λn,k contains all data-dependent partitions. We also define

M(Λn,k) =max{ |P| :P ∈Λn,k}

to be the maximum number of terminal nodes among all partitions in Λn,k. Note that M(Λn,k) ≤
2k (this statement does not rely on the specific algorithm used to grow a depth k oblique tree, as
long as the tree generates a partition of X at each level). Given a set zn = {z1, z2, . . . , zn} ⊂ R

p,
define Γ(zn,Λn,k) to be the number of distinct partitions of zn induced by elements of Λn,k, that
is, the number of different partitions {zn ∩ A : A ∈ P}, for P ∈Λn,k. The partitioning number
Γn,k(Λn,k) is defined by

Γn,k(Λn,k) =max{Γ(zn,Λn,k) : z1, z2, . . . , zn ∈ R
p},

i.e., the maximum number of different partitions of any n point set that can be induced by
members of Λn,k. Finally, let Fn,k(R) denote the collection of all functions (bounded by R) that
output an element of span(H) on each region from a partition P ∈Λn,k.

We can deduce that the partitioning number is bounded by

Γn,k(Λn,k) ≤
((

p
d

)
nd

)2k

≤

((
ep
d

)d

nd
)2k

=

(
enp
d

)d2k

.

The bound on Γn,k follows from the maximum number of ways in which n data points can
be split by a hyperplane in d dimensions. The

(
p
d

)
factor accounts for the number of ways in

which a d-dimensional hyperplane can be constructed in a p-dimensional space. Note that this
bound is not derived from the specific algorithm used to select the splitting hyperplanes; it is
purely combinatorial.

Then, by slightly modifying the calculations in Györfi et al. (2002, p. 240) and combining
them with Györfi et al. (2002, Lemma 13.1, Theorem 9.4), we have the following bound for

23

the covering number N(r,Fn,k(R),L1(Pxn)) of Fn,k(R) by balls of radius r > 0 in L1(Pxn) with
respect to the empirical discrete measure Pxn on xn = {x1,x2, . . . ,xn} ⊂ R

p:

(33)

N

(
β(n)
40R

,Fn,k(R),L1(Pxn)
)
≤ Γn,k(Λn,k)

(
3
(
6eR
β(n)
40R

)2VC(H))2k

≤

((
enp
d

)d)2k(
3
(
240eR2

β(n)

)2VC(H))2k

=

(
3
(
enp
d

)d)2k(
240eR2

β(n)

)VC(H)2k+1

,

where we use VC(H) to denote the VC dimension of span(H). According to (9), we know
that the regression function is uniformly bounded, ∥µ∥∞ ≤ M′. Let R = QB. We assume,
without loss of generality, that R ≥ M′ so that ∥µ∥∞ ≤ R and ||̂µ(Tk)∥∞ ≤ R almost surely, if
max1≤i≤n |yi| ≤ B. By Györfi et al. (2002, Theorem 11.4), with ε = 1/2 (in their notation),

P
(
∃ f ∈ Fn,k(R) : ∥µ − f ∥2 ≥ 2(∥y − f∥2n − ∥y − µ∥

2
n) + α(n, k) + β(n), ∀i : |yi| ≤ B

)
≤ 14 sup

xn
N

(
β(n)
40R

,Fn,k(R),L1(Pxn)
)

exp
(
−
α(n, k)n
2568R4

)
.

Then, we have the following probability concentration

P
(
ETK

[
∥µ − µ̂(Tk)∥

]
≥ 2(ETK

[
∥y − µ̂(Tk)∥2n

]
− ∥y − µ∥2n) + α(n, k) + β(n), ∀i : |yi| ≤ B

)
≤ 14 sup

xn
N

(
β(n)
40R

,Fn,k(R),L1(Pxn)
)

exp
(
−
α(n, k)n
2568R4

)
.(34)

This inequality follows from the fact that, on the event {∀i : |yi| ≤ B}, if

ETK

[
∥µ − µ̂(Tk)∥2 − 2∥y − µ̂(Tk)∥2n

]
≥ −2∥y − µ∥2n + α(n, k) + β(n)

holds, then there exists a realization µ̂(T ′k) ∈ Fn,k(R) such that

∥µ − µ̂(T ′k)∥2 − 2∥y − µ̂(T ′k)∥2n ≥ −2∥y − µ∥2n + α(n, k) + β(n),

and hence

P
(
ETK

[
∥µ − µ̂(Tk)∥

]
≥ 2(ETK

[
∥y − µ̂(Tk)∥2n

]
− ∥y − µ∥2n) + α(n, k) + β(n), ∀i : |yi| ≤ B

)
≤ P

(
∃ f ∈ Fn,k(R) : ∥µ − f ∥2 ≥ 2(∥y − f∥2n − ∥y − µ∥

2
n) + α(n, k) + β(n), ∀i : |yi| ≤ B

)
.

We can now plug in the result of (33) into (34) to obtain

(35) P(E1 ≥ 0, ∀i : |yi| ≤ B) ≤ 14
(
3
(
enp
d

)d)2k(
240eR2

β(n)

)VC(H)2k+1

exp
(
−
α(n, k)n
2568R4

)
.

We choose

α(n, k) =
2568R4

(
2kd log(enp/d) + 2k log(3) +VC(H)2k+1 log(240eR2

β(n)) + log(14n2)
)

n

β(n) =
240eR2

n2

24 A PROOFS

so that P(E1 ≥ 0, ∀i : |yi| ≤ B) ≤ 1/n2. Thus,

E11(∀i : |yi| ≤ B) ≤
(
ETK

[
∥µ − µ̂(Tk)∥2

]
+ 2∥y − µ∥2n

)
1(∀i : |yi| ≤ B) ≤ 12R2,

and so we have

(36) E
[
E11(∀i : |yi| ≤ B)

]
≤ 12R2P(E1 ≥ 0, ∀i : |yi| ≤ B) ≤

12R2

n2 =
12Q2B2

n2 .

Unbounded term. We now look at the second term on the right hand side of (32). Because

we have ∥̂µ(Tk)∥∞ ≤ Q ·
√

max1≤i≤n
1
i
∑i
ℓ=1 y2

ℓ
almost surely, we can bound

E
[
∥µ − µ̂(Tk)∥21(∃i : |yi| > B)

]
≤ (Q + 1)2E

[
max
1≤i≤n

max
{
y2, y2

i
}
1(∃i : |yi| > B)

]
.

Using the fact that the sum of non-negative variables upper bounds their maximum, and the
exponential concentration of the conditional distribution of y given x (Assumption 2) together
with a union bound, we can then apply Cauchy-Schwarz to obtain

E
[
∥µ − µ̂(Tk)∥21(∃i : |yi| > B)

]
≤ (Q + 1)2

√
(n + 1)E[y4]

√
nc1 exp(−c2(B−M)γ).

Setting B = Bn = M +
(
(6/c2) log(n + 1)

)1/γ
≥ M′, we have that

(37) E
[
∥µ − µ̂(Tk)∥21(∃i : |yi| > B)

]
≤

(Q + 1)2
√

c1E
[
y4]

n2 .

Thus combining (36) and (37), we have

(38)

E[E1] = E[E11(∀i : |yi| ≤ B)] + E[E11(∃i : |yi| > B)]

≤
12Q2B2

n2 +
(Q + 1)2

√
c1E

[
y4]

n2 =O
(
log2/γ(n)

n2

)
.

Next, we turn our attention to E[E2]. Since

E
[
∥y − µ̂(Tk)∥2n − ∥y − µ∥

2
n
]
= ∥µ − g∥2 + E

[
∥y − µ̂(Tk)∥2n − ∥y − g∥2n

]
,

it follows that

(39) E[E2] = 2∥µ − g∥2 + 2E
[
∥y − µ̂(Tk)∥2n − ∥y − g∥2n

]
+ α(n, k) + β(n).

Finally, combining the bounds (38) and (39) and simplifying α(n, k) and β(n),
(40)
E
[
∥µ − µ̂(TK)∥2

]
≤ 2∥µ − g∥2 + 2E

[
∥y − µ̂(TK)∥2n − ∥y − g∥2n

]
+C

2K(d +VC(H)) log(np/d) log4/γ(n)
n

,

for some positive constant C =C(c1, c2, γ,M,Q).

Pruned tree. We now consider the pruned tree, Topt. Let ETopt

[
∥µ − µ̂(Topt)∥2

]
= E′1 + E′2,

where

E′1 = ETopt

[
∥µ − µ̂(Topt)∥2

]
− 2(ETopt

[
∥y − µ̂(Topt)∥2n

]
− ∥y − µ∥2n) − 2λ|Topt|

E′2 = 2(ETopt

[
∥y − µ̂(Topt)∥2n

]
− ∥y − µ∥2n) + 2λ|Topt|.

Note that, for each k = 1,2, . . . ,n − 1,

∥y − µ̂(Topt)∥2n + λ|Topt| ≤ ∥y − µ̂(Tk)∥2n + λ2k,

25

and hence, for each k ≥ 1,

(41) E[E′2] ≤ 2∥µ − g∥2 + 2E
[
∥y − µ̂(Tk)∥2n − ∥y − g∥2n

]
+ λ2k+1.

Choose λ = λn such that α(n, k)+ β(n) ≤ λn2k+1. This implies that λn ≳
(d+VC(H)) log(np/d) log4/γ(n)

n .
For each realization of Topt, there exists k such that |Topt| ≥ 2k. By a union bound and the result
established in (35), we have

P(E′1 ≥ 0) ≤ P(ETopt

[
∥µ − µ̂(Topt)∥2

]
≥ 2(ETopt

[
∥y − µ̂(Topt)∥2n

]
− ∥y − µ∥2n) + 2λn|Topt|)

≤
∑

1≤k≤n−1

P(∃ f ∈ Fn,k(R) : ∥µ − f ∥2 ≥ 2(∥y − f∥2n − ∥y − µ∥
2
n) + λn2k+1)

≤
∑

1≤k≤n−1

P(∃ f ∈ Fn,k(R) : ∥µ − f ∥2 ≥ 2(∥y − f∥2n − ∥y − µ∥
2
n) + α(n, k) + β(n))

≤
∑

1≤k≤n−1

n−2 ≤ 1/n.

Once again, we split the expectation, E[E′1] into two cases, as in (32), and bound each case
separately. The argument is identical to that for the un-pruned tree so we omit details here.
Combining this bound on E[E′1] with (41) gives as an analogous result to (40), namely, for all
K ≥ 1,

(42)
E
[
∥µ − µ̂(Topt)∥2

]
≤ 2∥µ − g∥2 + 2E

[
∥y − µ̂(TK)∥2n − ∥y − g∥2n

]
+C

2K(p +VC(H)) log1+4/γ(n)
n

,

for some positive constant C =C(c1, c2, γ,M,Q).

The next part of the proof entails bounding E
[
∥y − µ̂(TK)∥2n − ∥y − g∥2n

]
, depending on the

assumptions we make. Note that for the constant output ŷt(x) ≡ yt, we have Q = 1 and
VC(H) = 1.

For Theorem 2.3: We bound E
[
∥y− µ̂(TK)∥2n−∥y−g∥2n

]
using Lemma 2.2. The inequality (10)

follows directly from (40) and the inequality (11) follows directly from (42).

For Theorem 3.2: Taking g = µ ∈ G and d = p, we bound E
[
∥y − µ̂(TK)∥2n − ∥y − g∥2n

]
using

Lemma 3.1. The inequality (14) follows directly from (40). To show (15), we use (14) and

inf
K≥1

{
2AV2

4(K−1)/q +C
2K+1 p log4/γ+1(n)

n

}

= 2(2 + q)
(

AV2

q

)q/(2+q)(Cp log4/γ+1(n)
n

)2/(2+q)

.

This completes the proof of both Theorem 2.3 and Theorem 3.2. ■

Proof of Corollary 2.4. Because our risk bounds allow for model misspecification, one can
easily establish consistency of µ̂(TK), even when µ ∈ F \ G. Recall that F = cl(G), that is,

F =

{
f (x) =

M∑
k=1

fk(aT
k x), ak ∈ R

p, fk : R 7→ R
}
.

Importantly, F includes functions whose L1 norm may be infinite. Consider such a function
µ that belongs to F but not to G. Furthermore, grant Assumptions 1 and 2, which entail

26 B TECHNICAL LEMMAS

µ ∈L∞(Rp). Let G′ ⊂ G denote the set of all single-hidden layer feed-forward neural networks
with activation function that is non-constant and of bounded variation (and hence bounded).
Then by Hornik (1991, Theorem 1), G′ is dense in L∞(Rp) ⊂L2(Px). Therefore, we can
choose a sequence {gn} ⊂ G

′, where each component function gnk is bounded, non-constant,
and of bounded variation, such that limn→∞ ∥µ − gn∥ = 0 and ∥gn∥L1 <∞ for each n. Define
a subsequence {gan} by an =max

{
m ≤ n : ∥gm∥L1 ≤ D

√
Kn/ log(n + 1)

}
, where D is a positive

constant large enough so that ∥g1∥L1 ≤ D
√

Kn/ log(n + 1) for all n. Then, by construction,
we have ∥µ − gan∥ → 0 and ∥gan∥L1 = o(

√
Kn) as n→ ∞. Finally, according to (10) (and

similarly (11)), since {gan} ⊂ F , we have limn→∞ E
[
∥µ − µ̂(TK)∥2

]
= 0.

An analogous argument holds for the pruned tree Topt. ■

Proof of Corollary 2.5. The proof follows directly from the assumptions and Theorem 2.3.
■

Proof of Theorem 4.1. Since we assume the subsample selection is independent of the split-
ting direction subset selection at each node, we have the following decomposition of the law
of the process that governs each tree in the forest:

ΠΘ = ΠK ×ΠI,

where I ⊂ {1, . . . ,n} is the set of indices of the subsampled data set of size N.

Part 1: Training error bound. By Jensen’s inequality,

EΠΘ
[
∥µ − µ̂(Θ)∥2

]
≤ EΠΘ

[
∥µ − µ̂(TK(Θ))∥2

]
.

Additionally, by the law of total expectation,

EΠΘ
[
∥µ − µ̂(TK(Θ))∥2

]
= EI

[
EΠK

[
∥µ − µ̂(TK(Θ))∥2 | I

]]
.

We can prove a training error bound analogous to that of Lemma 3.1 by considering the modi-
fied definitions of excess training error. Define excess training error at each node conditional
on the subsampled data as

RIK(t) = ∥y − yt∥
2
t,I − ∥y − g∥2t ,

and the excess training error of the tree as

RIK = ∥y − y∥2I − ∥y − g∥2
I
.

Since we do the subset selection independently at each node, any terminal node t of TK−1 is
independent of ΠK , conditional on ΠK−1. We can then apply the law of iterated expectation to
the conditional training error, just as in the proof of Lemma 2.2 and the bound follows directly.

Part 2: Oracle inequality. The second part of this proof is analogous to the proof Theorem 2.3
where the averaging over the data set is replaced by averaging over the subsampled data.

This completes the proof. ■

APPENDIX B: TECHNICAL LEMMAS

In this section, we present some technical lemmas that aid in the proof of our main results and
may also be of independent interest.

B.1 Impurity Bound 27

B.1. Impurity Bound. Our first lemma establishes an important connection between the
decrease in impurity and the empirical node-wide excess risk.

Lemma B.1 (Impurity bound). Define RK−1(t) = ∥y− ŷt∥
2
t − ∥y− g∥2t . Let t be a terminal node

of TK−1, and assume RK−1(t) > 0. Then, if g ∈ G,

max
(b,a)∈R1+p

∆̂(b,a, t) ≥
w(t)R2

K−1(t)

∥g∥2
L1(t)

.

Proof of Lemma B.1. Assume that g ∈ G, g(x) =
∑M

k=1 gk(aT
k x), and that g(xi) is not constant

across xi ∈ t, the result being trivial otherwise. We use g′k to denote the divided difference of gk
of successive ordered datapoints in the ak direction in node t. That is, if the data {(yi,xT

i) : xi ∈ t}
is re-indexed so that aT

k x1 ≤ aT
k x2 ≤ · · · ≤ aT

k xn(t), then

(43) g′k(b) =
gk(aT

k xi+1) − gk(aT
k xi)

aT
k xi+1 − aT

k xi
, for aT

k xi ≤ b < aT
k xi+1 and i = 1, . . . ,n(t) − 1,

where g′k(b) = 0 if b = aT
k xi = aT

k xi+1. Let

(44)
dΠ(b,ak)
d(b,ak)

=
|g′k(b)|

√
P(tL)P(tR)∑M

k′=1

∫
|g′k′(b

′)|
√
P(t′L)P(t′R)db′

denote the Radon-Nikodym derivative (with respect to the Lebesgue measure and counting
measure) of a probability measure on (b,a) after splitting node t at the decision boundary
aT

k x = b. Here tL = tL(b,ak) and tR = tR(b,ak) are the child nodes of t after splitting at aT
k x = b,

and P(tL) = n(tL)/n(t) and P(tR) = n(tR)/n(t) are the proportions of observations in node t that
is in tL and tR, respectively. Similarly, t′L = t′L(b′,ak′) and t′R = t′R(b′,ak′) are the child nodes of
t after splitting at aT

k′x = b′. Additionally, define

ψ̃t(x) =
1(x ∈ tL)P(tR) − 1(x ∈ tR)P(tL)

√
P(tL)P(tR)

=
√

w(t)ψt(x).

Note that {ψ̃t : t ∈ [TK]} is an orthonormal dictionary with respect to the node-wise inner
product, ⟨·, ·⟩t.

Because a maximum is larger than an average, max(b,a)∈R1+p ∆̂(b,a, t) ≥
∫
∆̂(b,ak, t)dΠ(b,ak).

Then, using the identity from (17) and the fact that the decision stump ψt belongs to Ψ⊥t
(see (3)), we have

(45) max
(b,a)∈R1+p

∆̂(b,a, t) ≥
∫ ∑

ψ∈Ψ⊥t

|⟨y,ψ⟩n|2dΠ(b,ak) ≥
∫
|⟨y,ψt⟩n|

2dΠ(b,ak).

By the definition of ψ̃t and Jensen’s inequality,

(46)
∫
|⟨y,ψt⟩n|

2dΠ(b,ak) = w(t)
∫
|⟨y, ψ̃t⟩t|

2dΠ(b,ak) ≥ w(t)
(∫
|⟨y, ψ̃t⟩t|dΠ(b,ak)

)2

.

Our next task will be to lower bound the expectation
∫
|⟨y, ψ̃t⟩t|dΠ(b,ak). First note the

following identity:

1(x ∈ tL)P(tR) − 1(x ∈ tR)P(tL) = −(1(xTa > b) − P(tR))1(x ∈ t),

28 B TECHNICAL LEMMAS

which means
√
P(tL)P(tR)⟨y, ψ̃t⟩t =

√
P(tL)P(tR)⟨y − ŷt, ψ̃t⟩t = −⟨y − ŷt,1(xTa > b)⟩t.

Using this identity together with the empirical measure (defined in (44)), we see that the
expectation in (46) is lower bounded by

(47)

∫
|⟨y − ŷt, ψ̃t⟩t|dΠ(b,ak) =

∑M
k=1

∫
|g′k(b)||⟨y − ŷt,1(aT

k x > b)⟩t|db∑M
k′=1

∫
|g′k′(b

′)|
√
P(t′L)P(t′R)db′

≥
|⟨y − ŷt,

∑M
k=1

∫
g′k(b)1(aT

k x > b)db⟩t|∑M
k′=1

∫
|g′k′(b

′)|
√
P(t′L)P(t′R)db′

.

Then, by the definition of g′k, we have
∑M

k=1

∫
g′k(b)1(aT

k xi > b)db = g(xi) − g(x1) for each
i = 1,2, . . . ,n(t), and hence

(48)
〈
y − ŷt,

M∑
k=1

∫
g′k(b)1(aT

k x > b)db
〉

t
= ⟨y − ŷt,g⟩t.

In light of (45), (46), (47), and (48), we obtain

(49) max
(b,a)∈R1+p

∆̂(b,a, t) ≥
w(t)|⟨y − ŷt,g⟩t|2

(
∑M

k′=1

∫
|g′k′(b

′)|
√
P(t′L)P(t′R)db′)2

.

Next, we derive upper and lower bounds on the denominator and numerator of (49), respec-
tively. First, we look at the denominator. Note that for each k′, the integral can be decomposed
as follows:

(50)
∫
|g′k′(b

′)|
√
P(t′L)P(t′R)db′ =

∑n(t)−1
i=1

∫
{b′:n(t′L)=i} |g

′
k′(b

′)|
√

(i/n(t))(1 − i/n(t))db′.

Then, using the fact that
√

(i/n(t))(1 − i/n(t)) ≤ 1/2 for 1 ≤ i ≤ n(t), and that the end points of
each integral in the sum of (50) can be explicitly identified from the definition of g′k′ in (43),

(51)
∫
|g′k′(b

′)|
√
P(t′L)P(t′R)db′ ≤

1
2

n(t)−1∑
i=1

∫
{b′:n(t′L)=i}

|g′k′(b
′)|db′ =

1
2

n(t)−1∑
i=1

∫ aT
k′xi+1

aT
k′xi

|g′k′(b
′)|db′.

By the definition of g′k′ as a divided difference (43) and the definition of total variation, for
each k′,

(52)
n(t)−1∑

i=1

∫ aT
k′xi+1

aT
k′xi

|g′k′(b
′)|db′ =

n(t)−1∑
i=1

|gk′(aT
k′xi+1) − gk′(aT

k′xi)| ≤ V(gk′ ,ak′ , t).

Combining (51) and (52) and plugging the result into the summation in the denominator
of (49), we get

M∑
k′=1

∫
|g′k′(b

′)|
√
P(t′L)P(t′R)db′ ≤

1
2

M∑
k′=1

V(gk′ ,ak′ , t) =
1
2
∥g∥L1(t).

Next, we lower bound the numerator in (49). Using the Cauchy-Schwarz inequality and the
fact that ⟨y − ŷt,y⟩t = ∥y − ŷt∥

2
t , we obtain

(53) ⟨y − ŷt,g⟩t = ⟨y − ŷt,y⟩t − ⟨y − ŷt,y − g⟩t ≥ ∥y − ŷt∥
2
t − ∥y − ŷt∥t∥y − g∥t.

B.2 Recursive Inequality 29

By the AM-GM inequality, we know that ∥y − ŷt∥t∥y − g∥t ≤ 1
2 (∥y − ŷt∥

2
t + ∥y − g∥2t). Plugging

this into (53), we get

⟨y − ŷt,g⟩t ≥
1
2

(∥y − ŷt∥
2
t − ∥y − g∥2t).

Now, squaring both sides and using the assumption that RK−1(t) > 0, we have

|⟨y − ŷt,g⟩t|2 ≥
1
4

(∥y − ŷt∥
2
t − ∥y − g∥2t)2 =

1
4

R2
K−1(t).

Now we can put the bounds on the numerator and denominator together to get the desired
result:

■max
(b,a)∈R1+p

∆̂(b,a, t) ≥
w(t)R2

K−1(t)

∥g∥2
L1(t)

.

B.2. Recursive Inequality. Here we provide a solution to a simple recursive inequality.

Lemma B.2. Let {ak} be a decreasing sequence of numbers and {bk} be a positive sequence
numbers satisfying the following recursive expression:

ak ≤ ak−1(1 − bkak−1), k = 1,2, . . . ,K.

Then,

aK ≤
1∑K

k=1 bk
, K = 1,2, . . .

Proof of Lemma B.2. We may assume without loss of generality that aK−1 > 0; otherwise the
result holds trivially since aK ≤ aK−1 ≤ 0 ≤ 1∑K

k=1 bk
. For K = 1,

a1 ≤ a0(1 − b1a0) ≤
1

4b1
<

1
b1
.

For K > 1, assume aK−1 ≤
1∑K−1

k=1 bk
. Then, either aK−1 ≤

1∑K
k=1 bk

, in which case we are done since

aK ≤ aK−1, or, aK−1 ≥
1∑K

k=1 bk
, in which case,

aK ≤ aK−1(1 − bKaK−1) ≤
1∑K−1

k=1 bk

(
1 −

bK∑K
k=1 bk

)
=

1∑K
k=1 bk

. ■

B.3. Sedrakyan’s Inequality. For completeness, we reproduce Sedrakyan’s inequality
(Sedrakyan, 1997) in its generalized form below.

Lemma B.3 (Sedrakyan’s inequality (Sedrakyan, 1997)). Let U and V be two non-negative
random variables with V > 0 almost surely. Then

E

[
U
V

]
≥

(
E
[√

U
])2

E[V]
.

30 B TECHNICAL LEMMAS

Proof of Lemma B.3. By the Cauchy-Schwarz inequality,

E
[√

U
]
= E

[√
U
V

√
V
]
≤

√
E

[
U
V

] √
E[V].

Rearranging the above inequality gives the desired result. ■

REFERENCES

Barron, A. R. (1993). Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans.
Inform. Theory 39 930–945. https://doi.org/10.1109/18.256500

Barron, A. R. (1994). Approximation and estimation bounds for artificial neural networks. Machine Learning 14
115–133. https://doi.org/10.1007/BF00993164

Barron, A. R., Cohen, A., Dahmen, W. and DeVore, R. A. (2008). Approximation and learning by greedy
algorithms. Annals of Statistics 36 64–94. https://doi.org/10.1214/009053607000000631 MR2387964

Bennett, K. P. (1994). Global tree optimization: A non-greedy decision tree algorithm. Journal of Computing
Science and Statistics 156–156.

Bertsimas, D. and Dunn, J. (2017). Optimal classification trees. Machine Learning 106 1039–1082.
https://doi.org/10.1007/s10994-017-5633-9

Bertsimas, D. and Dunn, J. (2019). Machine learning under a modern optimization lens. Dynamic Ideas LLC.
Bertsimas, D., Dunn, J. and Wang, Y. (2021). Near-optimal Nonlinear Regression Trees. Operations Research

Letters 49 201-206. https://doi.org/10.1016/j.orl.2021.01.002
Bertsimas, D., Mazumder, R. and Sobiesk, M. (2018). Optimal classification and regression trees with hyperplanes

are as powerful as classification and regression neural networks. Unpublished manuscript.
Bertsimas, D. and Stellato, B. (2021). The voice of optimization. Machine Learning 110 249–277.

https://doi.org/10.1007/s10994-020-05893-5
Breiman, L. (2001). Random Forests. Machine Learning 45 5–32. https://doi.org/10.1023/A:1010933404324
Breiman, L., Friedman, J., Olshen, R. and Stone, C. (1984). Classification and Regression Trees. Belmont, Calif.:

Wadsworth International Group, c1984. https://doi.org/10.1201/9781315139470
Brodley, C. E. and Utgoff, P. E. (1995). Multivariate decision trees. Machine Learning 19 45–77.

https://doi.org/10.1007/BF00994660
Buciluundefined, C., Caruana, R. and Niculescu-Mizil, A. (2006). Model Compression. In Proceedings of the

12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’06 535–541.
Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/1150402.1150464

Cattaneo, M. D., Farrell, M. H. and Feng, Y. (2020). Large sample properties of partitioning-based series
estimators. The Annals of Statistics 48 1718–1741. https://doi.org/10.1214/19-AOS1865

Chi, C.-M., Vossler, P., Fan, Y. and Lv, J. (2022). Asymptotic Properties of High-Dimensional Random Forests.
The Annals of Statistics 50 3415 – 3438. https://doi.org/10.1214/22-AOS2234

DeVore, R., Nowak, R. D., Parhi, R. and Siegel, J. W. (2023). Weighted variation spaces and approximation by
shallow ReLU networks. arXiv preprint arXiv:2307.15772.

Dunn, J. W. (2018). Optimal trees for prediction and prescription, PhD thesis, Massachusetts Institute of Technol-
ogy.

Durrett, R. (2019). Probability: Theory and Examples, 5 ed. Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge University Press. https://doi.org/10.1017/9781108591034

Frosst, N. and Hinton, G. (2017). Distilling a Neural Network Into a Soft Decision Tree. arXiv preprint
arXiv:1711.09784.

Ghosh, P., Azam, S., Jonkman, M., Karim, A., Shamrat, F. M. J. M., Ignatious, E., Shultana, S., Beer-
avolu, A. R. and De Boer, F. (2021). Efficient Prediction of Cardiovascular Disease Using Machine
Learning Algorithms With Relief and LASSO Feature Selection Techniques. IEEE Access 9 19304-19326.
https://doi.org/10.1109/ACCESS.2021.3053759

Györfi, L., Kohler, M., Krzyżak, A. and Walk, H. (2002). A Distribution-Free Theory of Nonparametric
Regression 1. Springer. https://doi.org/10.1007/b97848

Hastie, T., Tibshirani, R. and Friedman, J. (2009). The Elements of Statistical Learning. Springer Series in Statistics.
Springer, New York.

Heath, D., Kasif, S. and Salzberg, S. (1993). Induction of Oblique Decision Trees. Journal of Artificial Intelligence
Research 2 1–32. https://doi.org/10.1613/jair.63

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Networks 4 251-257.
https://doi.org/10.1016/0893-6080(91)90009-T

https://doi.org/10.1109/18.256500
https://doi.org/10.1007/BF00993164
https://doi.org/10.1214/009053607000000631
https://www.ams.org/mathscinet-getitem?mr=2387964
https://doi.org/10.1007/s10994-017-5633-9
https://doi.org/10.1016/j.orl.2021.01.002
https://doi.org/10.1007/s10994-020-05893-5
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1201/9781315139470
https://doi.org/10.1007/BF00994660
https://doi.org/10.1145/1150402.1150464
https://doi.org/10.1214/19-AOS1865
https://doi.org/10.1214/22-AOS2234
https://doi.org/10.1017/9781108591034
https://doi.org/10.1109/ACCESS.2021.3053759
https://doi.org/10.1007/b97848
https://doi.org/10.1613/jair.63
https://doi.org/10.1016/0893-6080(91)90009-T

B.3 Sedrakyan’s Inequality 31

Huang, J. Z. (2003). Local asymptotics for polynomial spline regression. The Annals of Statistics 31 1600–1635.
https://doi.org/10.1214/aos/1065705120

Hüllermeier, E., Mohr, F., Tornede, A. and Wever, M. (2021). Automated Machine Learning, Bounded Rationality,
and Rational Metareasoning. arXiv preprint arXiv:2109.04744.

Klusowski, J. M. (2020). Sparse Learning with CART. In Advances in Neural Information Processing Systems
(H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan and H. Lin, eds.) 33 11612–11622. Curran Associates,
Inc.

Klusowski, J. M. and Tian, P. (2022). Large Scale Prediction with Decision Trees. Journal of the American
Statistical Association.

Lee, G.-H. and Jaakkola, T. S. (2020). Oblique Decision Trees from Derivatives of ReLU Networks. In International
Conference on Learning Representations.

Li, X.-B., Sweigart, J. R., Teng, J. T. C., Donohue, J. M., Thombs, L. A. and Wang, S. M. (2003). Multivariate
decision trees using linear discriminants and tabu search. IEEE Transactions on Systems, Man, and Cybernetics
- Part A: Systems and Humans 33 194-205. https://doi.org/10.1109/TSMCA.2002.806499

Loh, W.-Y. and Shih, Y.-S. (1997). SPLIT SELECTION METHODS FOR CLASSIFICATION TREES. Statistica
Sinica 7 815–840.

López-Chau, A., Cervantes, J., López-García, L. and Lamont, F. G. (2013). Fisher’s decision tree. Expert Systems
with Applications 40 6283-6291. https://doi.org/10.1016/j.eswa.2013.05.044

Menze, B. H., Kelm, B. M., Splitthoff, D. N., Koethe, U. and Hamprecht, F. A. (2011). On Oblique Random
Forests. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases 453–469.
Springer. https://doi.org/10.1007/978-3-642-23783-6_29

Mingers, J. (1989). An empirical comparison of pruning methods for decision tree induction. Machine learning 4
227–243. https://doi.org/10.1023/A:1022604100933

Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R. and Yu, B. (2019). Definitions, methods, and applica-
tions in interpretable machine learning. Proceedings of the National Academy of Sciences 116 22071-22080.
https://doi.org/10.1073/pnas.1900654116

Murthy, S. K., Kasif, S. and Salzberg, S. (1994). A System for Induction of Oblique Decision Trees. Journal of
Artificial Intelligence Research 2 1–32. https://doi.org/10.1613/jair.63

Nobel, A. (1996). Histogram regression estimation using data-dependent partitions. The Annals of Statistics 24
1084 – 1105. https://doi.org/10.1214/aos/1032526958

Parhi, R. and Nowak, R. D. (2023). Deep learning meets sparse regularization: A signal processing perspective.
arXiv preprint arXiv:2301.09554.

Quinlan, J. R. (1993). C4.5, Programs for Machine Learning. In Proc. of 10th International Conference on Machine
Learning 252-259.

Raymaekers, J., Rousseeuw, P. J., Verdonck, T. and Yao, R. (2023). Fast Linear Model Trees by PILOT. arXiv
preprint arXiv:2302.03931.

Rodriguez, J. J., Kuncheva, L. I. and Alonso, C. J. (2006). Rotation Forest: A New Classifier En-
semble Method. IEEE Transactions on Pattern Analysis and Machine Intelligence 28 1619-1630.
https://doi.org/10.1109/TPAMI.2006.211

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable
models instead. Nature Machine Intelligence 1 206–215. https://doi.org/10.1038/s42256-019-0048-x

Scornet, E., Biau, G. and Vert, J.-P. (2015). Consistency of random forests. The Annals of Statistics 43 1716 –
1741. https://doi.org/10.1214/15-AOS1321

Sedrakyan, N. (1997). About the applications of one useful inequality. Kvant Journal 97 42–44.
Syrgkanis, V. and Zampetakis, M. (2020). Estimation and Inference with Trees and Forests in High Dimensions. In

Proceedings of Thirty Third Conference on Learning Theory (J. Abernethy and S. Agarwal, eds.). Proceedings
of Machine Learning Research 125 3453–3454. PMLR.

Tomita, T. M., Browne, J., Shen, C., Chung, J., Patsolic, J. L., Falk, B., Priebe, C. E., Yim, J., Burns, R.,
Maggioni, M. and Vogelstein, J. T. (2020). Sparse Projection Oblique Randomer Forests. Journal of Machine
Learning Research 21 1–39. https://doi.org/10.5555/3455716.3455820

Wager, S. and Athey, S. (2018). Estimation and Inference of Heterogeneous Treatment Ef-
fects using Random Forests. Journal of the American Statistical Association 113 1228-1242.
https://doi.org/10.1080/01621459.2017.1319839

Yang, Y., Morillo, I. G. and Hospedales, T. M. (2018). Deep Neural Decision Trees. In ICML Workshop on Human
Interpretability in Machine Learning (WHI).

Zhan, H., Liu, Y. and Xia, Y. (2023). Consistency of The Oblique Decision Tree and Its Random Forest. arXiv
preprint arXiv:2211.12653.

Zhang, T. (2003). Sequential greedy approximation for certain convex optimization problems. IEEE Transactions
on Information Theory 49 682-691. https://doi.org/10.1109/TIT.2002.808136

https://doi.org/10.1214/aos/1065705120
https://doi.org/10.1109/TSMCA.2002.806499
https://doi.org/10.1016/j.eswa.2013.05.044
https://doi.org/10.1007/978-3-642-23783-6_29
https://doi.org/10.1023/A:1022604100933
https://doi.org/10.1073/pnas.1900654116
https://doi.org/10.1613/jair.63
https://doi.org/10.1214/aos/1032526958
https://doi.org/10.1109/TPAMI.2006.211
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1214/15-AOS1321
https://doi.org/10.5555/3455716.3455820
https://doi.org/10.1080/01621459.2017.1319839
https://doi.org/10.1109/TIT.2002.808136

32 B TECHNICAL LEMMAS

Zhu, H., Murali, P., Phan, D., Nguyen, L. and Kalagnanam, J. (2020). A Scalable MIP-based Method for Learning
Optimal Multivariate Decision Trees. In Advances in Neural Information Processing Systems (H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan and H. Lin, eds.) 33 1771–1781. Curran Associates, Inc.

	Introduction
	Background and Prior Work
	Ridge Expansions

	Main Results
	Notation and Assumptions
	Computational Framework
	Orthogonal Tree Expansions
	Training Error Bound for Oblique CART
	Pruning
	Oracle Inequality for Oblique CART

	Fast Convergence Rates
	Oblique Random Forests
	Oracle inequality for oblique forests

	Conclusion and Future Work
	Multi-layer Networks
	Classification

	Acknowledgments
	Funding
	Proofs
	Technical Lemmas
	Impurity Bound
	Recursive Inequality
	Sedrakyan's Inequality

	References

