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Abstract
This paper shows that complexity bounds involving the total path variation (i.e., the

“path norm”) arise with any Lipschitz activation function which is zero at the origin. The
heart of the analysis uses the probabilistic method to establish the existence of a sparse
representer set for deep neural networks, which in turn, can be used to bound the metric
entropy for a subcollection of all deep neural networks.

Index terms — Deep learning; neural networks; supervised learning; nonparametric
regression; nonlinear regression; penalization; machine learning; high-dimensional data analysis;
big data; statistical learning theory; generalization error; probabilistic method; variation;
Markov chain; path norm; matrix product; quantization

1 Introduction

Statisticians and applied researchers are frequently concerned with predicting a response
variable at a new input from a set of data collected from an experiment or observational study.
We assume the learning (training) data is Dn = {(X1, Y1), . . . , (Xn, Yn)}, where (Xi, Yi),
1 ≤ i ≤ n are i.i.d. with common joint distribution PX,Y . Here, Xi ∈ Rd is the feature
(covariate vector) and Yi ∈ R is a continuous outcome. A generic pair of variables will be
denoted as (X, Y ) with joint distribution PX,Y . A generic coordinate of X will be denoted
by X. For convenience, we will often simply refer to X as a variable. We assume that
Yi = f∗(Xi) + εi, for i = 1, . . . , n (the statistical model) where f∗(x) = E [Y | X = x] is an
unknown regression function and {εi}1≤i≤n are i.i.d. errors. The conditional average of Y
given X is optimal in mean squared-error for the prediction of future Y from corresponding
input X, if one uses squared error loss L(Y, f̃) = |Y − f̃ |2 since it minimizes the conditional
risk E

[
|Y − f̃(X)|2 | X

]
=
∫
|y − f̃(X)|2PY |X(dy).

From the data, estimators f̂(x) = f̂(x;Dn) are formed. For concreteness, the loss at a
target f∗ is the L2(PX) square error ‖f∗ − f̂‖2 =

∫
|f∗(x)− f̂(x)|2PX(dx) and the risk is the

expected squared-error E‖f∗ − f̂‖2. For any class of functions F on Rd, the minimax risk is

Rn(F) = inf
f̂

sup
f∈F

E
[
‖f − f̂‖2

]
, (1)

where the infimum runs over all estimators f̂ of f based on the data Dn. We will investigate the
behavior of Rn(F) for deep neural network classes F [that are used to model a high-dimensional
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nonparametric regression function] and provide adaptive risk bounds for E
[
‖f∗ − f̂‖2

]
when

f̂ is a obtained from complexity penalized empirical risk minimization. More specifically, a
major focus of this article will be to investigate how E

[
‖f∗ − f̂‖2

]
can be small even though

n may be considerably smaller than the ambient dimension d or other parameters which define
f∗ [for example, if it is a deep neural network used to model a high-dimensional regression
function].

2 Deep Learning Networks

2.1 Background and Prior Work

Good empirical performance of deep learning networks has been reported across various
disciplines for difficult tasks in classification and prediction [LeCun et al., 2015]. These
successes have largely been buoyed by the ability of multi-layer networks to generalize well
despite being able to fit rich and complicated datasets, given enough parameters—an apparent
contradiction to age-old statistical wisdom that warns against overfitting. This phenomenon is
particularly striking when the input dimension is far greater than the available sample size,
as is the case with many modern applications in molecular biology, medical imaging, and
astrophysics, to name a few. Despite a vast amount of effort that goes into training deep
learning models, typically in an ad-hoc manner for anecdotal datasets, a unifying theory of their
complex mechanisms has not yet caught up with these applied and practical developments.

As is generally true in statistical estimation, there is a trade-off between estimation error
and descriptive model complexity relative to sample size. Indeed, suppose f̂ is a complexity
penalized least squared estimator from data Dn = {(Xi, Yi)}ni=1, over a class of candidate
functions F [e.g., deep neural networks], i.e., f̂ is chosen to optimize or approximately optimize

1

n

n∑
i=1

(Yi − f(Xi))
2 +

penalty(f)
n

, (2)

over a collection F of candidate functions, where penalty(f) is a term that modulates some
notion of the complexity of f . Then it is a classical fact [Barron et al., 1999, Barron, 1991]
that f̂ has the following adaptive risk bound:

E[‖f∗ − f̂‖2] ≤ C inf
f∈F

{
‖f∗ − f‖2 + complexity(f)

n

}
, (3)

where C > 1 is a universal constant and complexity(f) is a measure of descriptive complexity
of a candidate fit f [typically complexity(f) is proportional to the δ-metric entropy of F at
δ = ‖f − f∗‖]. The right side of (3) is an index of resolvability expressing the tradeoff between
approximation error and descriptive complexity relative to sample size n. Thus, in analyzing
the statistical properties of deep neural networks, in particular, one needs bounds on these
two quantities. The forthcoming results attempt to address these aspects.

At the outset, one may be tempted to believe that the descriptive complexity of deep
learning models is very large, in accordance with the large number of parameters that index
each model. Fortunately, it is argued that, although a generic deep network may be difficult to
describe, nevertheless, under suitable control on norms of the weights, it can be approximated
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well by a sparse representation, and this sparse representation comes from a subfamily that has
a manageable cardinality. These small cardinality coverings can then be used to balance the
estimation error and complexity trade-off [as per (3)] and thereby achieve [close to] optimal
rates of estimation, in a minimax sense, in appropriate settings.

Prior results that seek to quantity different notions of model complexity typically produce
unsavory statistical risk bounds for two main reasons.

First, the functions classes that are approximated by deep networks are typically not suited
for high-dimensional settings. Indeed, minimax optimal rates for certain smooth function
classes [e.g., Lipschitz, Hölder, Sobolev] degrade either with the number of inputs per layer,
viz., O(n−αd), where αd → 0 as d approaches infinity, or in a similar way through the depth.
Second, the complexity constants often scale exponentially with the depth or number of units
per layer [Neyshabur et al., 2017, 2015, Golowich et al., 2017, Bartlett et al., 2017, Arora
et al., 2018], which is problematic for high-dimensional or very deep networks. Indeed, many
applications involve depths ranging from 2 or 3 to 22 [Szegedy et al., 2015] or, at the extreme
end, 152 [He et al., 2016]. Furthermore, the input dimension d can be extremely large, possibly
in the millions.

Other works [Yarotsky, 2017, 2018, Harvey et al., 2017] study the general approximation
capabilities of deep networks using state-of-the-art VC dimension bounds cTL log(T/L) ≤
VCdim(T, L) ≤ CTL log T for depth L ramp networks, where T is the number of weights. So
the VC dimension is indeed linear in the number of parameters to within a log-factor. These
results, again, when applied to a statistical learning setting, do not satisfactorily showcase the
advantages of these model classes.

A main theme in this section aims to answer the following fundamental question: Assume
that the target function f∗ is equal to [or approximated well] by a deep network. For such
a family, what is the size of the smallest subfamily with members that can approximate an
arbitrary network within a desired level of accuracy?

Let f(x;W) be the parameterized family of depth L networks which map input vec-
tors x of dimension d into output vectors of dimension dout, where f(x;W) either takes
the form W1φ(W2φ(· · ·WL−1φ(WLx))) or the form φout(W1φ(W2φ(· · ·WL−1φ(WLx)))),
where φout is any Lipschitz(1) function, such as the fully-rectified linear function φout(z) =
sgn(z)min{|z|, 1}, which is applied at the output, and φ is another Lipschitz(1) function, such
as the positive-part activation function φ(z) = max{z, 0} for scalar inputs z [also known as
the ramp function or lower-rectified linear unit (ReLU)] applied at the internal layers. Note
that our numbering scheme is the opposite of convention, where deeper layers are associated
with smaller numbers and shallower layers are associated with higher numbers. However, it
will be seen that our analysis is facilitated by such a labeling.

There are d` units on layer ` for ` = 0, 1, 2, . . . , L, with d0 = dout on the outermost layer,
and dL = d input units on the innermost layer, where, for analysis convenience, ` specifies the
number of layers away from the output. It is typical practice to set d1, d2, . . . , dL−1 to be a
common [possibly quite large] value h [known as the width], at least as large as arising from d.
The units on layer ` are indexed by j` in {1, 2, . . . , d`}. Each W` is the d`−1 × d` matrix of
weights and each matrix entry wj`−1,j` = W`[j`−1, j`] is the weight between unit j`−1 in layer
` and unit j` in layer `, where the index specifying layer ` is dropped when it is clear from
the indices j`. Each coordinate of the input vector x is assumed to have a bounded range in
[−1, 1].
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The focus of the present paper is on the case that φout is the identity and dout = 1, though
multidimensional outputs can be examined similarly. In this case, there is but one output
index j0 = 1, and W1 is a row vector of length d1 with entries wj0,j1 = wj1 . Accordingly, for
networks of the first form, the function f(x;W) is∑

j1

wj1φ
(∑
j2

wj1,j2φ
(∑
j3

wj2,j3 · · ·φ
(∑
jL

wjL−1,jLxjL
)))

. (4)

Each unit computes xj` = φ(
∑

j`+1
wj`,j`+1

xj`+1
), where xj` denotes the output value for unit

j` on layer `, as a function of its inputs xj`+1
, starting with the innermost layer.

In [Barron and Klusowski, 2018], the authors examine the statistical risk [mean squared
predictive error] of multi-layer networks with `1-type controls on their parameters and with
ramp activation functions [also called lower-rectified linear units ReLU]. In this setting, the
mean-squared predictive error [L2 risk] of an `1-type complexity regularized estimator was
shown to be upper bounded by [(L3 log d)/n]1/2, where d is the input dimension to each layer,
L is the number of layers, and n is the sample size. Similar bounds hold for generalization error
and Rademacher complexity. In this way, the input dimension can be much larger than the
sample size and the estimator can still be accurate, provided the target function has such `1

controls and that the sample size is at least moderately large compared to L3 log d. The heart
of the analysis is in the development of a sampling strategy that demonstrates the accuracy of
a sparse covering of deep ramp networks.

Theorem 1 ([Barron and Klusowski, 2018]). Consider the parameterized family F(L,V ) of
depth L ReLU networks with composite variation V at most V .1 There is a subfamily F̃M
with log-cardinality of order

(L− 2)M log( max
2≤`≤L

min{M,d`}) +M log d,

such that for any probability measure P on [−1, 1]d and any f(x;W) belonging to F(L,V ),
there is a sparse approximant f(x;W̃) in F̃M , with at most LM nonzero weights, such that∫

|f(x;W̃)− f(x;W)|2P(dx) ≤
[
LV√
M

]2
.

Recent related work has focused on using accuracy statements such as Theorem 1 to bound
the Rademacher complexity of various deep network classes and studying how they can be
used to bound the generalization error [i.e., the difference between the empirical error on the
training dataset and the expected error on the underlying joint probability distribution with
respect to some loss function] [Neyshabur et al., 2017, 2015, Golowich et al., 2017, Bartlett
et al., 2017, Arora et al., 2018]. Typical results are of the following form: given access to
a sample of size n drawn from the network, the generalization error scales as C/

√
n, where

C is some complexity constant that depends on the parameters of the network. In all these
works, however, C has exponential dependence on L, either indirectly through some product
of norms

∏L
`=1 ‖W`‖ of the individual weight matrices W` across the layers ` = 1, 2, . . . , L,

1A complexity constant that involves only the entry-wise `1 norms of successive products of the weight
matrices, i.e., ‖|W1||W2| · · · |W`|‖1 and ‖|W`+1||W2| · · · |WL|‖1. [For a matrix A, ‖A‖1 =

∑
j1,j2
|A[j1, j2]|].

See [Barron and Klusowski, 2018] for further details.
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or directly as cL for some positive constant c > 1 [in addition to polynomial factors in L or
logarithmic factors in d1, d2, . . . , dL]. Notably, the work of [Golowich et al., 2017] manages
to avoid this direct dependence on L by controlling various Schatten norms [The r-Schatten
norm of a matrix is the `r norm of its singular values.] of the weight matrices.

The form
∏L
`=1 ‖W`‖ of the complexity constants is an artifact of Rademacher analysis,

which necessitates applying some sort of sub-multiplicative matrix norm inequality at the
“peeling” step [whereby the complexity bound is inductively reduced to a complexity bound
involving shallower networks]. Our probabilistic method avoids these reductions and instead
works with all the weights at once.

We will now discuss some reasons to prefer the complexity constant V in Theorem 1 over
other complexity constants in the literature. First, V involves norms of matrix products of the
weight matrices, differs from complexity constants involving the product of individual matrix
norms of the weight matrices, i.e.,

∏L
`=1 ‖W`‖, [Neyshabur et al., 2017, Golowich et al., 2017,

Bartlett et al., 2017]. To see the utility of working with V , consider the simple case when
all the weight matrices are the same and equal to a d× d matrix Q. Then ‖W1 · · ·WL‖1 is
bounded by a constant factor, independent of L, times [ρ(Q)]L, where ρ(Q) is the spectral
radius of Q. On the other hand,

∏L
`=1 ‖W`‖ = ‖Q‖L ≥ [ρ(Q)]L. Hence if ρ(Q) ≤ 1, while

‖W`‖ > 1, the growth of the two complexity constants could be, at the extreme, the difference
between constant and exponential in L. This could be problematic since some applications
involve very large depths, e.g., L = 152 in [He et al., 2016]. Second, because any two matrix
norms are equivalent, the `1 norm of a product of matrices can be bounded by the product of
other individual matrix norms, provided they are submultiplicative. Taken together, these
facts imply that the product of the weight matrices is a fundamental quantitative measure of
complexity, from which other complexity constants in the literature can be obtained.

Yet another reason why the `1 norm of a matrix product is a natural complexity constant
[if the input is contained in an `∞ ball] is that the risk bound (7) is akin to those obtained in
[Raskutti et al., 2011, Theorem 4] or [Rigollet and Tsybakov, 2011, Theorem 3.2] for squared-
error prediction in high-dimensional linear regression with `1 controls on the parameter vectors.
To highlight the relationship between the linear and nonlinear case, if one instead used a
linear activation function φ(z) = z, the functions (4) would be deep linear networks [Ji and
Telgarsky, 2018]

f(x;W) = W1 · · ·WLx. (5)

In this case, an `1 control on W1 · · ·WL, say V = ‖W1 · · ·WL‖1 ≤ V , also leads to squared-

error prediction of order V
(
log d
n

)1/2
. Of course, there is an important difference here—the

richness of F(L,V ) is determined by the expressiveness afforded by the nonlinearities and
also by the variation through v. Therefore F(L,V ) more flexibly represents a larger class of
functions, far beyond the rigidity of linear.

Statements in the same style as Theorem 1 can be translated into bounds on the minimax
risk (1), as will now be discussed. If F(L,V ) denotes the collection of all such depth L
networks with V (f) ≤ V and L∞ norm bounded by a constant, then Theorem 1 shows that
the L2 ε-covering entropy of F(L,V ), denoted by VF(L,V )(ε), is of order

L3V 2 log(max` d`)

ε2
. (6)

[Recall the definition of ε-covering entropy: Let P be a probability measure on a measurable
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space and suppose F is a family of functions in L2(P). A subfamily F̃ is called an ε-covering
for F if for any f ∈ F , there exists f̃ ∈ F̃ such that ‖f − f̃‖ ≤ ε. The logarithm of the
minimum cardinality of ε-nets is called the ε-covering entropy of F and is denoted by VF (ε).]
For Gaussian errors ε = Y − f(X), [Yang and Barron, 1999] show that the minimax risk is
essentially governed by ε2n, where VF(εn) � nε2n. Thus, one can deduce the following result
from [Yang and Barron, 1999] and the ε-covering entropy bound (6) by solving VF (εn) � nε2n
for the function class F = F(L,V ). Thus, the minimax risk bound (1) becomes

Rn(F(L,V )) ≤ CV

(
L3 log(max`≥2 d`)

n

)1/2

, (7)

for some universal positive constant C > 0. This risk bound is surprising since it shows that
the effect of large depth L and interlayer dimensions d1, d2, . . . , dL is relatively harmless and
benign, even for modest sample sizes. This may explain why the performance of deep networks
does not seem to be hindered by their highly parameterized structure. Also important to
notice is that the rate in the exponent (1/2) does not degrade with the input dimension or
other network parameters. Indeed, the main dependence on the target regression function f∗

[which in this case is a deep neural network] is through a complexity constant v that depends
only on products of its weight matrices W∗

1, . . . ,W
∗
L and a low order polynomial in the depth

L.

3 Main Results

We now turn our attention to the main topic of this paper. It is natural to ask whether there
a general theory for quantifying the size of a sparse covering of deep neural networks for any
activation function, not just ReLU.

Choosing the right activation function depends on the problem at hand; there is no single
foolproof activation or loss function which yields ideal results in all the models. For example,
the ReLU function suffers from the so-called “dying ReLU problem” [so that large numbers of
units are pushed into inactive states for all inputs, thereby lowering the model capacity]. This
prompts users to try other activation functions such as, for example, softplus φ(z) = log(1+ez)
[Glorot et al., 2011] or hyperbolic tangent φ(z) = [ez − e−z]/[ez + e−z].

As mentioned previously, it is desirable to have the complexity constants in the accuracy
bounds involve norms of products of the weight matrices. Theorem 1 shows this type of result
for `1 norms of products of the weight matrices W1, . . . ,WL for ReLU activation functions
φ(z) = max{0, z} [Barron and Klusowski, 2018]. However, the analysis hinges crucially on the
positive homogeneity of the ReLU [i.e., φ(rz) = rφ(z) for r ≥ 0], and so a completely new
technique must be developed if there is any hope in generalizing the results for non-homogenous
activations that are popular alternatives when the ReLU is not justifiable for the particular data
setting. Towards the direction, assume henceforth that φ is a general Lipschitz(1) activation
function with φ(0) = 0.

3.1 Probabilistic Method

We will use a trick [known as the probabilistic method] in which, for any collection of L weight
matrices W, representer parameters W̃ are drawn at random from a finite pre-specified set
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and then it is shown that the desired accuracy bound holds for the expectation, so accordingly
there exists a representer of that accuracy. This type of reasoning in the context of function
approximation is due to Pisier and Maurey [Pisier, 1980-1981] and was later applied to
nonparametric regression with single-hidden layer networks in the seminal work of Barron
[Barron, 1993, 1991].

The probabilistic method in the current setting has the following schema.

1. Let W̃ = (W̃1, . . . ,W̃L) be representer weights, drawn at random from a finite pre-
specified set W̃. The representer set is indexed by a parameter M that controls both
the accuracy and the cardinality.

2. Suppose E
W̃
[‖f(x;W̃) − f(x;W)‖] ≤ δM . Then there exists a realization W̃′ of W̃

such that ‖f(x;W̃′)− f(x;W)‖ ≤ δM .

3. The set of all possible realizations of W̃, mainly {f(x;W̃) : W̃ ∈ W̃}, forms a δM -cover
for {f(x;W) : W ∈W}, where W is a collection of sequences of L weight matrices.

4. If a typical realization of W̃ is sparse [as controlled by M ], then the cardinality of W̃
will be small.

The bulk of the forthcoming work will be in establishing the second step, i.e., that
E
W̃
[‖f(x;W̃)− f(x;W)‖] ≤ δM . This necessitates specifying a distribution on the weights,

which we will now do.
Working with ±φ and doubling the number of weights per layer, it can be assumed that

the weights wj`−1,j` are nonnegative, and indeed, we do so for the rest of the discussion. We
first define a joint distribution across the indices (j1, . . . , jL). This joint distribution has
conditionals, for index j` given j`−1, defined as

pj`|j`−1
=
wj`−1,j`

vj`−1

,

where vj`−1
=
∑

j`
wj`−1,j` and vj0 =

∑
j1
wj1 . For the moment, assume the vj` are known;

later on, they will be replaced with approximants ṽj` .
This setup facilitates a probabilistic interpretation of a deep neural network (4) as an

iterated expectation interspersed with nonlinearities:

f(x;W) =
∑
j1

vj0pj1φ
(
vj1
∑
j2

pj2|j1φ
(
vj2
∑
j3

pj3|j2 · · ·φ
(
vjL−1

∑
jL

pjL|jL−1
xjL
)))

.

Note that this representation is different from [Barron and Klusowski, 2018], where it was
shown that for ReLU networks,

f(x;W) = V
∑
j1

pj1φ
(∑
j2

pj2|j1φ
(∑
j3

pj3|j2 · · ·φ
(∑
jL

pjL|jL−1
xjL
)))

,

and V = ‖W1W2 · · ·WL‖1.
In forming the [random] approximant f(x;W̃), take a random sample of size M from the

joint distribution defined by

pj1,j2,...,jL = pj1pj2|j1 · · · pjL|jL−1
. (8)
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Let Kj1,j2,...,jL ∼ Multinomial(M, (pj1,j2,...,jL)) be the corresponding empirical counts of
occurrences of (j1, j2, . . . , jL), distributed as multinomial, with empirical marginal counts
Kj`1 ,j`2 ,...,j`k

formed by summing over all unspecified indices. Representers of the original
scaled network weights pj` and pj`|j`−1

are formed by taking

p̃j` =
Kj`

M
and p̃j`|j`−1

=
Kj`−1,j`

Kj`−1

,

with the convention that 0/0 = 0.2

Each unit of the network computes x̃j`−1
= φ

(∑
j`
x̃j`w̃j`−1,j`

)
, with w̃j`−1,j` = vj`−1

p̃j`|j`−1
,

and the full approximant takes on the form

f(x;W̃) =
∑
j1

w̃j1φ
(∑
j2

w̃j1,j2φ
(∑
j3

w̃j2,j3 · · ·φ
(∑
jL

w̃jL−1,jLxjL
)))

. (9)

Note that by construction, each w̃j`−1,j` is an unbiased estimate of wj`−1,j` .

3.2 Cardinality of Cover

Each f(x;W̃) is built from empirical counts Kj1,j2,...,jL of specified sum M . The number of
ways one can have

∑
j1,j2,...,jL

Kj1,j2,...,jL =M is equal to(
d1d2 · · · dL +M − 1

M

)
, (10)

[by Feller’s stars-and-bars argument [Feller, 1971, page 38]] with log-cardinality bounded by
M log(2e d1d2 · · · dL/M) whenever d1d2 · · · dL > M − 1. Furthermore, as explained in [Barron
and Klusowski, 2018, Section 5] when d` ≥ M , we may replace d`, ` = 1, 2, . . . , L− 1, with
dnew` = min{d`,M} in representation of f(x;W̃). As such, the set of different realizations of
f(x;W̃) has manageable cardinality of order LM log(max`≥2 d`).

3.3 Bounding the Accuracy

To analyze E
W̃
|f(x;W̃) − f(x;W)|2, we first write the difference between f(x;W̃) and

f(x;W) as a telescoping sum of [successively collapsing] differences f(x;W̃) − f(x;W) =∑L−1
`=0 [f`+1(x;W̃,W) − f`(x;W̃,W)] in which the f`+1(x;W̃,W) and f`(x;W̃,W) differ

only on layer `+ 1, the former using w̃j`,j`+1
and the later using wj`,j`+1

, i.e.,

f`+1(x;W̃,W) = f(x; (W̃1, . . . ,W̃`,W̃`+1,W`+2, . . . ,WL)),

and
f`(x;W̃,W) = f(x; (W̃1, . . . ,W̃`,W`+1,W`+2, . . . ,WL)),

respectively.
2Note that if (M1,M2,M3) ∼ Multinomial(M, (p1, p2, p3)), then M1/(M1 + M2) is the maximum

likelihood estimator of p1/(p1 + p2). Analogously, since (Kj`−1,j` ,Kj`−1 − Kj`−1,j` ,M − Kj`−1) ∼
Multinomial(M, (pj`−1,j` , pj`−1 − pj`−1,j` , 1 − pj`−1)), it follows that Kj`−1,j`/Kj`−1 is the maximum like-
lihood estimator of pj`|j`−1

.
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By the triangle inequality, one can bound E[
∫
|f(x;W̃)−f(x;W)|P(dx)] by bounding each

E[
∫
|f`+1(x;W̃,W)− f`(x;W̃,W)|P(dx)] and summing from ` = 0 to ` = L− 1. Repeated

application of the Lipschitz property of φ permits bounding each difference |f`+1(x;W̃,W)−
f`(x;W̃,W)| by ∑

j1,...j`−1,j`

w̃j1w̃j1,j2 · · · w̃j`−1,j` |φ(zj`)− φ(z̃j`)|, (11)

where zj` =
∑

j`+1
wj`,j`+1

xj`+1
and z̃j` =

∑
j`+1

w̃j`,j`+1
xj`+1

. Note that w̃j1w̃j1,j2 · · · w̃j`−1,j`

and z̃j` are conditionally independent given Kj` and hence,

E[w̃j1w̃j1,j2 · · · w̃j`−1,j` |φ(z̃j`)− φ(zj`)||Kj` ]

= E[w̃j1w̃j1,j2 · · · w̃j`−1,j` |Kj` ]E[|φ(z̃j`)− φ(zj`)||Kj` ].

The following identity, which is based on the fact that the Kj`−1,j` are conditionally binomially
distributed given Kj` , reveals how the product of the path weights arise after taking iterated
expectations [conditioning successively on Kj′`

] with respect to W̃:

E[w̃j1w̃j1,j2 · · · w̃j`−1,j` |Kj` ] = vj0vj1pj1|j2 · · · vj`−1
pj`−1|j`

Kj`

M

= vj0pj1vj1pj2|j1 · · · vj`−1
pj`|j`−1

Kj`

pj`M

= wj1wj1,j2 · · ·wj`−1,j`

Kj`

pj`M
, (12)

where pj`−1|j` =
pj`−1,j`

pj`
=

pj`−1

pj`
pj`|j`−1

are the reverse [backward] conditionals and pj` is the
marginal probability of the index j`, which can be expressed as

pj` =
∑

j1,j2,...,j`−1

wj1wj1,j2 · · ·wj`−1,j`

vj0vj1 · · · vj`−1

=
∑

j1,j2,...,j`−1

wj1wj1,j2 · · ·wj`−1,j`∑
j′1
wj′1

∑
j′2
wj1,j′2 · · ·

∑
j′`
wj`−1,j

′
`

(≥ minj`−1

wj`−1,j`

vj`−1
) by summing out all indices other than j` in (8).

Using a similar analysis in [Barron and Klusowski, 2018], the conditional expected value of
the difference |φ(z̃j`)− φ(zj`)| given Kj` is at most vj`

σj` (x)√
Kj`

, where µj` =
∑

j`+1
pj`+1|j`xj`+1

and σ2j`(x) =
∑

j`+1
pj`+1|j`(xj`+1

−µj`)2 are the mean and variance, respectively, of z j̃ resulting
from a single draw j̃ ∼ pj`+1|j` . Applying this bound to the expected value of (11) and using
the identity from (12), one can bound the expected difference |f`+1(x;W̃,W)− f`(x;W̃,W)|
by

1√
M

∑
j1,j2,...,j`,j`+1

wj1wj1,j2 · · ·wj`−1,j`wj`,j`+1
σj`

√
1/pj` ,

or equivalently,
1√
M
‖W1W2 · · ·W`W

′
`+1‖1, (13)

if W′
`+1[j`, j`+1] is defined as wj`,j`+1

σj`
√
1/pj` if pj` > 0 and zero otherwise and σ2j` =∫

σ2j`(x)P(dx). A final bound on entire expected difference E[
∫
|f(x;W̃) − f(x;W)|P(dx)]

results from summing (13) from ` = 0 to ` = L− 1. This motivates the following definition.
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Definition 1. Let f(x;W) be a depth L network with weight matrices W =
(W1,W2, . . . ,WL). The average path variation V = V (f) is defined by

1

L

L−1∑
`=0

∑
j1,j2,...,j`,j`+1

wj1wj1,j2 · · ·wj`−1j`w
′
j`,j`+1

=
1

L

L−1∑
`=0

‖W1W2 · · ·W`W
′
`+1‖1. (14)

Remark 1. The complexity bound also has the following upper bound, which is similar to
(and improves upon) [Golowich et al., 2017, Theorem 2], which is purely in terms of products
of `1,∞ norms of the individual weight matrices, ‖W1‖1‖W2‖1,∞ · · · ‖WL‖1,∞,

V ≤ 1

L

L−1∑
`=0

√
‖W1‖1‖W2‖1,∞ · · · ‖W`‖1,∞

∑
j`,j`+1

σj`wj`,j`+1

√ ∑
j1,...,j`−1

wj1wj1,j2 · · ·wj`−1,j` .

The full story, however, is not complete—these calculations only establish coverings with
respect to the L1 metric, which, when converted to L2 minimax upper bounds as per [Yang

and Barron, 1999], lead to suboptimal rates of the form
(
L3V 2 log(max`≥2 d`)

n

)1/3
with exponent

(1/3) instead of (1/2). In order to obtain squared-error risk bounds of the form (7), we can
adapt these accuracy bounds to the L2 metric. Such extensions require more finesse. For
example, when expanding the second power of (11) and using the triangle inequality, one is
led to bound terms of the form√

E[|w̃j1w̃j1,j2 · · · w̃j`−1,j` |2|Kj` ], (15)

which do not have the same form as (12). Indeed, the conditional second moments of w̃j`−1,j`

are biased upwards, since each Kj`−1,j` is conditionally binomially distributed Bin(Kj` , pj`−1|j`)

given Kj` .
3 Thus,√

E[|w̃j1w̃j1,j2 · · · w̃j`−1,j` |2|Kj` ]� wj1wj1,j2 · · ·wj`−1,j`

Kj`

pj`M
. (16)

Instead, one can introduce a small correction term to the w̃j`−1,j` , without sacrificing
approximation error, by truncating the Kj`−1,j` below level 2 and redefining p̃j`|j`−1

=
(Kj`−1,j`

−1)
Kj`−1

1{
Kj`−1,j`

≥2
}. This empirical quantity can also be decomposed as

Kj`−1,j`

Kj`−1︸ ︷︷ ︸
unbiased estimate of pj`|j`−1

−
1{

Kj`−1,j`
>0

}
Kj`−1︸ ︷︷ ︸

correction

. (17)

Note that now p̃j`|j`−1
are empirical sub-probabilities, since they no longer sum to one across

the indices j`. The first term of (17) is an unbiased estimate of pj`|j`−1
and the second correction

term is of smaller order. This truncation only further sparsifies the network by requiring
that the size of the weights exceed some threshold value; otherwise they are set to zero. By

3For example, if K ∼ Bin(K′, p), then the second moment of K/K′ is p2 + p(1− p)/K′, whereas the second
moment of K1{K≥2}/K

′ is at most p2.
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(22) in Lemma 1, the redefined network weights yield the inequality E[|φ(z̃j`)− φ(zj`)||Kj` ] ≤
2vj`

σj` (x)√
Kj`

.

Now, to the matter of unknown vj` . Each one can be approximated by a distribution
[independent of W̃] that puts positive mass on the two integer values that straddle it, namely,

ṽj` =
1

M
[dvj`e(Tj` − 1)1{Tj`≥2} + bvj`c(M − Tj` − 1)1{M−Tj`≥2})],

where Tj` ∼ Bin(M, qj`) are independent and vj` = dvj`eqj` + bvj`c(1− qj`). By Lemma 1,

E[|ṽj` − vj` |
2] ≤ 2

M
(
√
qj`dvj`e+

√
1− qj`bvj`c)

2.

It can similarly be shown via Lemma 1 that the expected value of ṽ2j` is at most (dvj`eqj` +
bvj`c(1 − qj`))2 = v2j` . To summarize, if w̃j`−1,j` = ṽj`−1

p̃j`|j`−1
, then the square root of the

conditional expected second moment of their successive products (15) is at most (12).
Realizations of ṽj` can be indexed by triplets of integers [corresponding to dvj`e, bvj`c, and

Tj` ] and, as such, they can be shown to have manageable cardinality as well. In fact, only
LM/2 of the vj` need to be represented, since the total number of nonzero weights p̃j`|j`−1

in
f(x;W̃) is at most LM/2. Indeed, the counts Kj`−1,j` which determine the weights p̃j`|j`−1

have sum
∑

j`−1,j`
Kj`−1,j` =M . Accordingly, the number of nonzero weights from layer `− 1

to layer `, namely
∑

j`−1,j`
1{

Kj`−1,j`
≥2

}, is not more than M/2 and hence the total number

of nonzero weights is not more than LM/2. These arise from M choices of nonzero weight
paths (j1, j2, . . . , jL) from the Kj1,j2,...,jL .

Define ‖W‖1,∞ = max` ‖W`‖1,∞, the maximum row-sums of the weight matrices. Then
the triplets (dvj`e, bvj`c, Tj`) can be indexed by a set with cardinality at most [2(‖W‖1,∞ +
1)(M + 1)]dLM/2e. Combining these counts with (10), it follows that if ‖W‖1,∞ ≤ W , then
the total cardinality of the representer set is at most

[2(W + 1)(M + 1)]dLM/2e
(
d1d2 · · · dL +M − 1

M

)
, (18)

or, in other words, of order LM log(W max`≥1 d`). This establishes the following statement
about the accuracy and cardinality of a sparse covering of deep neural networks with general
activation function [c.f., Theorem 1].

Theorem 2. Let φ be a Lipschitz(1) activation function with φ(0) = 0. Consider the parame-
terized family F(L,V ,W ) of depth L networks with average path variation V at most V and
‖W‖1,∞ ≤ W . There is a subfamily F̃M with log-cardinality of order

LM log(W max
`≥1

d`)

such that for any probability measure P on [−1, 1]d and any f(x;W) belonging to F(L,V ,W ),
there is a sparse approximant f(x;W̃) in F̃M , with at most LM nonzero weights, such that∫

|f(x;W̃)− f(x;W)|2P(dx) ≤
[
LV√
M

]2
.
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Remark 2. One can also create a cover with cleaner cardinality via an alternative argument. To
do this, assume that there are reference weights W∗ = (W∗

1, . . . ,W
∗
L) such that vj` ≤ v∗j` , where

v∗j` =
∑

j`+1
w∗j`,j`+1

. Then, at each layer, arrange a null index j0` for j` with corresponding

trivial subnetwork fj0` (x) = zj0`
= 0 and define p∗j`|j`−1

=
wj`,j`−1

v∗j`−1

and p∗
j0` |j`−1

= 1 −
vj`−1

v∗j`−1

.

Each unit in the representer network f(x;W̃) computes xj`−1
= φ

(∑
j`
xj`w̃j`−1,j`

)
, with

w̃j`−1,j` = v∗j`−1
p̃j`|j`−1

and p̃j`|j`−1
are the empirical conditional probabilities built from counts

of random draws from p∗j1,...,jL = p∗j1p
∗
j2|j1 · · · p

∗
jL|jL−1

. Adding the null index increases the
interlayer dimension d` by one, so redefining d` + 1 by d`, we find that the cardinality of the
representer set is at most (

d1d2 · · · dL +M − 1

M

)
.

The difference now is that the approximation accuracy has changed slightly. In particular, the
average path variation V becomes

V ∗ =
1

L

L−1∑
`=0

∑
j1,j2,...,j`,j`+1

wj1wj1,j2 · · ·wj`−1j`w
′
j`,j`+1

=
1

L

L−1∑
`=0

‖W1W2 · · ·W`W
′
`+1‖1, (19)

where w′j`,j`+1
= w∗j`,j`+1

σ∗j`

√
1/p∗j` and with similar definitions for σ∗j` and p∗j` as before.

Remark 3. The complexity constant (14) is similar to the complexity constant V =
‖W1W2 · · ·WL‖1 for linear (5) or ReLU networks [see Theorem 1] in that it involves only
norms of products of the weight matrices.

4 Adaptive Estimation

Flexible regression models are built by combining simple functional forms, which here consist
of repeated compositions and linear transformations of nonlinear functions. In fitting such
models to data in a training sample, there is a role for empirical performance criteria such
as penalized squared error in selecting components of the function from a given library of
candidate terms. With suitable penalty, optimizing the criterion adapts the total weights
(W1, . . . ,WL) of combination or the number d` of units xj` as well as the subset of which units
to include in each layer. In practice, one does not know the “true” V (f∗) for the regression
function f∗, which makes it difficult to select an upper bound v on V = V (f) for functions
f in F(L,V ). In fact, f∗ may not even be equal to a deep neural network and therefore
empirical risk minimization over a finite covering of F(L,V ) is inconceivable unless the model
is well-specified.

Motivated by the previous concerns, an important question is whether the same rate in
(7), derived from nonadaptive estimators, is available from an adaptive risk bound (3) [which
allows for a more data-dependent and agnostic criterion for fits of f∗] for estimators that
minimize a penalized empirical risk (2) over F(L) =

⋃
V >0F(L,V ).

We investigate penalized estimators f̂ with penalty defined through the “smallest" com-
plexity constant V (f∗) [see (14)] among all representations of a network f∗, i.e.,

f̂ = argmin
f∈F(L)

{
1

n

n∑
i=1

(Yi − f(Xi))
2 + λnV (f)

}
,

12



where λn �
(
L3 log(max`≥2 d`)

n

)1/2
[whose choice is inspired by Theorem 1 and (7)]. Using

techniques from [Klusowski and Barron, 2016], it can be shown that f̂ has an adaptive risk
bound of the form

E
[
‖f∗ − f̂‖2

]
≤ C inf

f∈F(L)

{
‖f − f∗‖2 + λnV (f)

}
, (20)

for some universal constant C > 1, which expresses the approximation and complexity tradeoff
in the same spirit as (3).

Penalties of similar flavor have already been established for single hidden layer networks,
corresponding to L = 2. For example, using approximation results from [Barron, 1993], it was
shown in [Barron, 1994] that (20) holds for a penalty λn‖W1‖1 with λn � (d(log(n/d))/n)1/2.
Furthermore, recent work [Klusowski and Barron, 2016] has shown that one can additionally
control the size of the hidden layer parameters wj1,j2 through a penalty λn‖W1W2‖1 with
λn � ((log(d))/n)1/2 (which yields risk bounds similar to those for high-dimensional deep ReLU
networks mentioned previously (7)). The authors’ past work [Barron and Klusowski, 2018,
Theorem 4] shows that these risk bounds for the single hidden layer case are essentially optimal
in the sense that the minimax risk Rn(F(L,V )) is lower bounded by V 1/4((log(d))/n)1/2.

The idea for establishing the validity of (20) builds on earlier work [Barron, 1991], which
takes the penalty, penalty(f), to be Kraft summable,

∑
f∈NF(L,V )(εn)

e−penalty(f) ≤ 1, where
NF(L,V )(εn) is a finite εn-covering of F(L,V ). In this way, penalty(f) is interpretable as a
complexity [in nats] or e−penalty(f) is interpretable as a prior probability of f . For instance, one
may assign penalty(f) to be the minimal log-cardinality of coverings of function classes, plus
a description length of such classes, which in this case, is the codelength [in nats] to describe
the subset of nonzero weights in f . These considerations motivate the choice of penalty
as being proportional to the log-size of a sparse covering of deep networks in F(L,V ) that
achieve a desired accuracy [see (10)]. Using an accuracy quantification similar to Theorem 1
or Proposition 2, the choice of M can then be optimized to balance approximation error and
complexity.

5 Future Work

One open question for future research involves network quantization and memory requirements
for storing the network topology and the associated network weights. The previous approxi-
mation scheme of drawing M random indices (j1, j2, . . . , jL) from the distribution pj1,j2,...,jL
may be well suited for this purpose. For example, if in addition to establishing bounds on the
expected value of f(·;W̃), we were able show high-probability statements of the form

P
[∫
|f(x;W)− f(x;W̃)|2P(dx) ≤ C log(1/δ)L2V 2(f)/M

]
≥ 1− δ, δ ∈ (0, 1),

one could construct a quantization of the network from the aforementioned sampling
scheme with high-probability. The bottleneck in such a quantization is from generating
the empirical counts Kj1,j2,...,jL ∼ Multinomial(M, (pj1,j2,...,jL)), which are then marginal-
ized to form the empirical network weights. It is possible to implement this random
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construction in O(M(d1 + d2 + · · · + dL)) time by sampling M random paths via L suc-
cessive random draws from the conditionals pj`|j`−1

[each of which is computable in O(d`) time].

Lemma 1. Suppose K ∼ Bin(m, p). Then,

E
[
(K − 1)21{K≥2}

]
≤ m(m− 1)p2, (21)

E
[
|(K − 1)1{K≥2} −mp|2

]
≤ 2mp, (22)

and for any positive v1 and v2,

E
[
|v1(K − 1)1{K≥2} + v2(m−K − 1)1{m−K≥2}|2

]
≤ m(m− 1)(v1p+ v2(1− p))2 (23)

Proof. For showing (21), consider first the pointwise inequality (k − 1)21{k≥2} ≤ k(k − 1),
which is valid for any integer k = 0, 1, . . . ,m. Then take expectations with respect to K and
note that E [K(K − 1)] = m(m− 1)p2.

For the second inequality (22), we note that (K−1)1{K≥2} = K−1{K>0}. Thus, it follows
that

E
[
|(K − 1)1{K≥2} −mp|2

]
≤ Var[K] + E

[
1{K>0}

]
.

Finally, Var[K] = mp(1− p) and E
[
1{K>0}

]
= P [K > 0] ≤ mp.

The third inequality (23) uses (21) together with the triangle inequality.
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