Zhiqi Bu^{*}, Cynthia Rush ${ }^{\S}$, Jason M. Klusowski ${ }^{\dagger}$ and Weijie Su^{*}
University of Pennsylvania
*University of Pennsylvania, ${ }^{\text {§ }}$ Columbia University, ${ }^{\top}$ Rutgers University
"Algorithmic Analysis and Statistical Estimation of SLOPE via Approximate Message Passing" (arxiv.org/abs/1907.07502)

- Often $p>n$
- $\beta_{j} \neq 0$ means the j th variable is relevant
- Most of entries of $\boldsymbol{\beta}$ are zeros

Calibration

For every iteration t, assign $\theta_{t}=\alpha \tau_{t}$, where α is a vector in the same direction as λ

Theorem 1 Under conditions on Λ, the state evolution recursion with calibration defined above, has a unique fixed point to which with calibration defined above, has a unique fixed poin
the convergence monotonic in t, for any initial condition.

Calibration between $\boldsymbol{\lambda}$ and α :

$$
\boldsymbol{\lambda}=\boldsymbol{\alpha} \tau_{*}\left(1-\lim _{p} \frac{1}{\delta p} \mathbb{E}\left\|\operatorname{prox}_{J_{\boldsymbol{\alpha} \tau_{*}}}\left(\mathbf{B}+\tau_{*} Z\right)\right\|_{0}^{*}\right)
$$

CHALLENGES

Framework: $\quad \hat{\boldsymbol{\beta}} \approx \boldsymbol{\beta}^{t} \approx \operatorname{prox}_{J_{\alpha \tau_{*}}}\left(\boldsymbol{\beta}+\tau_{*} Z\right)$
Although AMP for LASSO is well-studied [Bayati-Montanari '15], applying AMP to SLOPE is challenging because the proximal operator of sorted ℓ_{1} norm is non-separable
[Berthier-Montanari-Nguyen '17] showed for general nonseparable functions

$$
\boldsymbol{\beta}^{t} \approx \operatorname{prox}(\boldsymbol{\beta}+\tau Z)
$$

The main challenge is to show AMP iterate $\hat{\boldsymbol{\beta}} \approx \boldsymbol{\beta}^{t}$

MAIN RESULTS OF SLOPE AMP

Theorem 2 Under some assumptions,

$$
\lim _{p \rightarrow \infty} \frac{1}{p}\left\|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{t}\right\|^{2}=c_{t}, \quad \text { where } \quad \lim _{t \rightarrow \infty} c_{t}=0
$$

Theorem 3 Under some assumptions, for any uniformly pseudo-Lipschitz sequence of functions ψ_{p} and for $\mathbf{Z} \sim \mathcal{N}\left(0, \mathbb{I}_{p}\right)$,

$$
\lim _{p} \psi_{p}(\widehat{\boldsymbol{\beta}}, \boldsymbol{\beta})=\lim _{t} \lim _{p} \mathbb{E}_{\mathbf{Z}}\left[\psi_{p}\left(\operatorname{prox}_{J_{\boldsymbol{\alpha} \tau_{t}}}\left(\boldsymbol{\beta}+\tau_{t} \mathbf{Z}\right), \boldsymbol{\beta}\right)\right] .
$$

Corollary 3.1 Under some assumptions,

$$
\lim _{p} \frac{1}{p}\|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}\|^{2}=\delta\left(\tau_{*}^{2}-\sigma_{z}^{2}\right) .
$$

INFERENCE: TPP,FDP \& MSE

For large enough $\epsilon:=|\operatorname{supp}(\boldsymbol{\beta})| / p$ or small enough $\delta:=n / p$,
LASSO suffers from Donoho-Tanner phase transition: TPP is bounded away from 1 [Donoho-Tanner '09; Su-BogdanCandès '17 (image source)].
 counts the unique non-zero magnitudes in b

State evolution

SLOPE AMP (Approximate Message Passing)
$\boldsymbol{\beta}^{t+1}=\operatorname{prox}\left(\mathbf{X}^{T} \mathbf{r}^{t}+\boldsymbol{\beta}^{t} ; \boldsymbol{\theta}\right) ; \mathbf{r}^{t+1}=\mathbf{y}-\mathbf{X} \boldsymbol{\beta}^{t+1}+\frac{\mathbf{r}^{t}}{n}\left\|\boldsymbol{\beta}^{(t+1)}\right\|_{0}^{*}$
The dynamics of the AMP iterations are tracked by a recursive sequence referred to as the state evolution.

State Evolution $(n / p \rightarrow \delta)$:

$\tau^{2}=F\left(\tau^{2}, \boldsymbol{\alpha} \tau\right):=\sigma_{z}^{2}+\lim _{p} \frac{1}{\delta p} \mathbb{E}\|\operatorname{prox}(\mathbf{B}+\tau \mathbf{Z} ; \boldsymbol{\alpha} \tau)-\mathbf{B}\|^{2}$. which is solved iteratively via $\tau_{t+1}^{2}=F\left(\tau_{t}^{2}, \boldsymbol{\alpha} \tau_{t}\right)$.

However, SLOPE overcomes the phase transition. Specifically we can charaterize one of the SLOPE path as a Mobius transformation: for TPP $=u$, the minimum FDP is at most $\frac{a u+b}{c u+d}$ for some constants a, b, c, d.

Figure 1: Red dot: LASSO; Blue dot: SLOPE; Black solid line: LASSO trade-off; Red dashed line: SLOPE trade-off.

In addition, fixing the signal prior and under some assumptions, we show that switching from LASSO to SLOPE gives better paths in the sense of achieving smaller FDP, larger TPP and smaller mean squared error at the same time.

