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SPARSE HIGH-DIM LINEAR REGRESSION

nx i

e Oftenp > n
e (3; # 0 means the jth variable is relevant

e Most of entries of 3 are zeros

SLOPE PROBLEM AND PROPERTIES
Bogdan et al. (2015) proprosed SLOPE problem as recovering:

3= argmin 1|y — Xb||3 + Jx(b)
b

where

Ja(b) = \)\1\b|(1) + o+ )‘p|b‘(p)J

-~

sorted /1 norm

having A\; > ... > A, > 0,and |b|(1) > ... > |b|(p) are the order
statistics.
Clearly, when \; = --- = \,, SLOPE reduces to LASSO.

COMPUTING SLOPE SOLUTION

Denote prox(y; A) := argmin, = ||y — b3 + Jx(b).
We may solve the SLOPE problem by

e Subgradient method:
B+ = gt) _ g, . ¢®)

where ¢() is a subgradient of objective function at 3(%).
o ISTA: Iterative Shrinkage Thresholding Algorithm,
B+ = prox (B + s, X T (y — XBY); \s, )
o FISTA: Fast ISTA, with s, 11 = (14 /1 + 4s7)/2

B1H+D — prox (M(t) s X (y — XM®): )\st)

1 (31 _ =)
St+1

o AMP: Approximate Message Passing [Donoho-Maleki-
Montanari "10],
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Bttt = prox(XTrt + B3 QT ),
¢

ritl =y - Xg@it ¢ % {V prox(X 'r! + 3% om)} .
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SLOPEMEETS AMP: DOESSLOPE OUTPERFORM LASSQO?
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*University of Pennsylvania, $Columbia University, TRutgers University

“Algorithmic Analysis and Statistical Estimation of SLOPE via Approximate Message Passing” (arxiv.org/abs/1907.07502)

EXISTING PROCEDURE: LASSO
In 1996, Tibshirani proposed LASSO problem:

1
min |y — X0+ ||
N——

/1 norm

1
=min [y — Xbll3 + Albi| + -+ Alby |

e Useful in identitying which 8, # 0 (support recovery,
feature selection, etc.)

e [.LASSO selects at most n variates before it saturates

e Estimation: SLOPE achieves minimax estimation prop-
erties under certain random designs without requiring
knowledge of the sparsity degree of 3
[Su-Candes "16; Bellec-Lucué-Tsybakov "18]

e Testing: SLOPE controls the false discovery rate in the
case of independent predictors
|[Bogdan-Berg-Sabatti-Su-Candes "15]

e Optimization: Since sorted ¢; norm is a norm, cost re-
mains convex and it can be efficiently solved by using
standard methods like proximal gradient descent

(see R package "SLOPE") [Bogdan-Berg-Sabatti-Su-Candes "15]

PROXIMAL OPERATORS

e For any function h, prox, is defined as

1
prox, (x) := argmin QHw — b|]” + h(b),
b

and V prox, is divergence of the proximal operator

e There exists an algorithm to compute the proximal op-
erator when h = Jg.[Bogdan-Berg-Sabatti-Su-Candes "15]

e For SLOPE, Vprox; (b) = |[prox; (b)|[;, where |/b]|;
counts the unique non-zero magnitudes in b.

STATE EVOLUTION
SLOPE AMP (Approximate Message Passing):

t
51 = prox(XTr' + B 0);r T =y —XB 4+ T g

The dynamics of the AMP iterations are tracked by a
recursive sequence referred to as the state evolution.

State Evolution (n/p — 0):

1
lim —K B
im -] prox(

o/ e%s —BHQ.

™ = F(r*, ar) :=o0?

which is solved iteratively via 77, ; = F(77, ar).

CALIBRATION

For every iteration ¢, assign 6, = ar;, where « is a
vector in the same direction as A.

Theorem 1 Under conditions on A, the state evolution recursion
with calibration defined above, has a unique fixed point to which
the convergence monotonic in t, for any initial condition.

Calibration between \ and «:

.1 .
A =T, (1 — 11]]511 %EH prox; (B+ T*Z)HO> .

MAIN RESULTS OF SLOPE AMP

Theorem 2 Under some assumptions,

1 -
lim —||8 — BY|* =c:, where
P—> OO p
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CHALLENGES

Framework: B ~ B! ~ prox o, (B+ 1.2)

Although AMP for LASSO is well-studied [Bayati-Montanari
"15], applying AMP to SLOPE is challenging because the prox-
imal operator of sorted ¢; norm is non-separable.

|Berthier-Montanari-Nguyen "17] showed for general non-

separable functions
B ~ prox(B + 17)

The main challenge is to show AMP iterate

B~ g

lim C+ — 0.
t— 00

Theorem 3 Under some assumptions, for any uniformly pseudo-Lipschitz sequence of functions 1, and for Z ~ N(0,1,),

lim ¢, (8, B) = limlim Ez [y (prox,,__ (8 +1Z), B)]

Corollary 3.1 Under some assumptions,

INFERENCE: TPP,FDP & MSE

For large enough ¢ := |supp(3)|/p or small enough ¢ := n/p,
LASSO suffers from Donoho-Tanner phase transition: TPP
is bounded away from 1 [Donoho-Tanner '09; Su-Bogdan-

Candes "17 (image source)].
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However, SLOPE overcomes the phase transition. Specifically
we can charaterize one of the SLOPE path as a Mobius trans-
formation: for TPP= wu, the minimum FDP is at most Z,;‘fig for
some constants a, b, c, d.
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Figure 1: Red dot: LASSO; Blue dot: SLOPE; Black solid line: LASSO
trade-off; Red dashed line: SLOPE trade-off.

In addition, fixing the signal prior and under some assump-
tions, we show that switching from LASSO to SLOPE gives

better paths in the sense of achieving smaller FDP, larger TPP

and smaller mean squared error at the same time.
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