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SPARSE HIGH-DIM LINEAR REGRESSION

• Often p > n

• βj 6= 0 means the jth variable is relevant

• Most of entries of β are zeros

SLOPE PROBLEM AND PROPERTIES

Bogdan et al. (2015) proprosed SLOPE problem as recovering:

β̂ := argmin
b

1
2‖y −Xb‖

2
2 + Jλ(b)

where

Jλ(b) = λ1|b|(1) + · · ·+ λp|b|(p)︸ ︷︷ ︸
sorted `1 norm

having λ1 ≥ . . . ≥ λp ≥ 0, and |b|(1) ≥ . . . ≥ |b|(p) are the order
statistics.
Clearly, when λ1 = · · · = λp, SLOPE reduces to LASSO.

• Estimation: SLOPE achieves minimax estimation prop-
erties under certain random designs without requiring
knowledge of the sparsity degree of β
[Su-Candès ’16; Bellec-Lucué-Tsybakov ’18]

• Testing: SLOPE controls the false discovery rate in the
case of independent predictors
[Bogdan-Berg-Sabatti-Su-Candès ’15]

• Optimization: Since sorted `1 norm is a norm, cost re-
mains convex and it can be efficiently solved by using
standard methods like proximal gradient descent
(see R package "SLOPE") [Bogdan-Berg-Sabatti-Su-Candès ’15]

COMPUTING SLOPE SOLUTION

Denote prox(y;λ) := argminb
1
2‖y − b‖

2
2 + Jλ(b).

We may solve the SLOPE problem by

• Subgradient method:

β(t+1) = β(t) − st · g(t)

where g(t) is a subgradient of objective function at β(t).

• ISTA: Iterative Shrinkage Thresholding Algorithm,

β(t+1) = prox
(
β(t) + stX

>(y −Xβ(t));λst

)
• FISTA: Fast ISTA, with st+1 = (1 +

√
1 + 4s2t )/2

β(t+1) = prox
(
M (t) + stX

>(y −XM (t));λst

)
M (t+1) = β(t) +

st − 1

st+1
· (β(t) − β(t−1))

• AMP: Approximate Message Passing [Donoho-Maleki-
Montanari ’10],

βt+1 = prox(XT rt + βt;ατt),

rt+1 = y −Xβt+1 +
rt

n

[
∇prox(X>rt + βt;ατt)

]
.
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PROXIMAL OPERATORS
• For any function h, proxh is defined as

proxh(x) := argmin
b

1

2
‖x− b‖2 + h(b),

and∇proxh is divergence of the proximal operator

• There exists an algorithm to compute the proximal op-
erator when h = Jθ.[Bogdan-Berg-Sabatti-Su-Candès ’15]

• For SLOPE, ∇proxJθt
(b) = ‖proxJθt

(b)‖∗0, where ‖b‖∗0
counts the unique non-zero magnitudes in b.

EXISTING PROCEDURE: LASSO
In 1996, Tibshirani proposed LASSO problem:

min
b

1

2
‖y −Xb‖22 + λ‖b‖1︸ ︷︷ ︸

`1 norm

=min
b

1

2
‖y −Xb‖22 + λ|b1|+ · · ·+ λ|bp|

• Useful in identifying which βj 6= 0 (support recovery,
feature selection, etc.)

• LASSO selects at most n variates before it saturates

STATE EVOLUTION
SLOPE AMP (Approximate Message Passing):

βt+1 = prox(XT rt + βt;θ); rt+1 = y −Xβt+1 +
rt

n
‖β(t+1)‖∗0

The dynamics of the AMP iterations are tracked by a
recursive sequence referred to as the state evolution.

State Evolution (n/p→ δ):

τ2 = F (τ2,ατ) := σ2
z + lim

p

1

δp
E||prox(B + τZ;ατ)−B||2.

which is solved iteratively via τ2t+1 = F (τ2t ,ατt).

CALIBRATION

For every iteration t, assign θt = ατt, where α is a
vector in the same direction as λ.

Theorem 1 Under conditions on Λ, the state evolution recursion
with calibration defined above, has a unique fixed point to which
the convergence monotonic in t, for any initial condition.

Calibration between λ and α:

λ = ατ∗

(
1− lim

p

1

δp
E‖proxJατ∗

(B + τ∗Z)‖∗0
)
.

CHALLENGES

Framework: β̂ ≈ βt ≈ proxJατ∗
(β + τ∗Z)

Although AMP for LASSO is well-studied [Bayati-Montanari
’15], applying AMP to SLOPE is challenging because the prox-
imal operator of sorted `1 norm is non-separable.

[Berthier-Montanari-Nguyen ’17] showed for general non-
separable functions

βt ≈ prox(β + τZ)

The main challenge is to show AMP iterate
β̂ ≈ βt

MAIN RESULTS OF SLOPE AMP
Theorem 2 Under some assumptions,

lim
p→∞

1

p
‖β̂ − βt‖2 = ct, where lim

t→∞
ct = 0.

Theorem 3 Under some assumptions, for any uniformly pseudo-Lipschitz sequence of functions ψp and for Z ∼ N (0, Ip),

lim
p
ψp(β̂,β) = lim

t
lim
p

EZ[ψp(proxJατt
(β + τtZ),β)].

Corollary 3.1 Under some assumptions,

lim
p

1

p
||β̂ − β||2 = δ(τ2∗ − σ2

z).

INFERENCE: TPP,FDP & MSE
For large enough ε := | supp(β)|/p or small enough δ := n/p,
LASSO suffers from Donoho-Tanner phase transition: TPP
is bounded away from 1 [Donoho-Tanner ’09; Su-Bogdan-
Candès ’17 (image source)].
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Phase Transition Occurs

No Phase Transition

However, SLOPE overcomes the phase transition. Specifically
we can charaterize one of the SLOPE path as a Mobius trans-
formation: for TPP= u, the minimum FDP is at most au+b

cu+d for
some constants a, b, c, d.
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Figure 1: Red dot: LASSO; Blue dot: SLOPE; Black solid line: LASSO
trade-off; Red dashed line: SLOPE trade-off.

In addition, fixing the signal prior and under some assump-
tions, we show that switching from LASSO to SLOPE gives
better paths in the sense of achieving smaller FDP, larger TPP
and smaller mean squared error at the same time.
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