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e When do decision trees adapt to the sparsity of a
predictive model?

Introduction

Training data

D={(X,Y]),....(X,,Y,)}, (Xi,Y) eR xR
Predictor for decision tree 1’
Y = Y(T,D)

Prediction error

S A

Err(Y(T)) = Exyn[(Y = V(X))
for independent copy (X', Y)

CART decision trees

CART [1] methodology based on recursively minimiz-
INg 1IMpurity
For regression, impurity in node t € 1" 1s

~ ] _

At) = Y; —Y,)",

X,;Et

where N(t) = #{X,; €t} and Y = ﬁ > Xt Vi
Optimal direction 7 and split point s obtained by max-

1mizing reduction n impurity

A(s.t) = A(t) ]]\;(235) Aty)

 Altr),

where

tr={Xet: X;<s}, tp={Xet:X,>s}
are left and right child nodes
Tree output Y (x) = Y, for x in terminal node t

Main results

e (Consider pruned tree

~ 1 -

Teargmin{— Y — V(X 2+@T},

g i n;( (Xi))" + T
where T« 18 fully grown tree, temperature o =

O((d/n)log(n/d), and |T| is # of terminal nodes

Theorem

Suppose X is uniformly distributed on [0,1]% and
Y =) gi(X
]

1s a sparse additive model with dy < d smooth com-

ponent functions g;(-), where each function is not too
locally ‘flat’. Then,

Err(Y (T)) 0.5,
U 7 ) tog () o Ot

Proof idea

e Reduction in impurity ﬁ(é t) can be written as

S

Alt) x p (Y, Y[X et),

where » = p(Y,Y|X € t) is Pearson correlation
between response data Y and optimal decision stump

? :YL 1(Xj < §) —I—?R 1(Xj > §)

e [raining error bound

%Z@/ V(X)) < Var(Y) exp(~K x minp?),

1=1
where K = O(logy(n)) is tree depth and
lim inf,, min; p* = Q(1/dp) a.s

Experiments
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Figure: Boston housing dataset 1| (dy = 10 and n = 506) with

d — dj noisy features added. Plot shows prediction error of pruned
CART vs. cross-validated k-NN as d varies.

Conclusion

4L

e CART adapts to underlying sparsity, whereas kernel
methods with nonadaptive weights (like k-NN) suffer
from curse of dimensionality
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