Error Reduction from Stacked Regressions

Jason M. Klusowski

Operations Research and Financial Engineering (ORFE)

Joint work with Xin Chen (Princeton) \& Yan Shuo Tan (NUS)

Stacked Generalizations and Stacked Regressions

- Data analyst rarely knows a priori what the true model is

Stacked Generalizations and Stacked Regressions

- Data analyst rarely knows a priori what the true model is
- Starts by deriving collection of candidate models $\hat{\mu}_{1}, \hat{\mu}_{2}, \ldots, \hat{\mu}_{M}$

Stacked Generalizations and Stacked Regressions

- Data analyst rarely knows a priori what the true model is
- Starts by deriving collection of candidate models $\hat{\mu}_{1}, \hat{\mu}_{2}, \ldots, \hat{\mu}_{M}$
- Next step is to select best model based on criterion such as AIC, BIC, or out-of-sample error (e.g., cross-validation)

Stacked Generalizations and Stacked Regressions

- Data analyst rarely knows a priori what the true model is
- Starts by deriving collection of candidate models $\hat{\mu}_{1}, \hat{\mu}_{2}, \ldots, \hat{\mu}_{M}$
- Next step is to select best model based on criterion such as AIC, BIC, or out-of-sample error (e.g., cross-validation)
- David Wolpert (1992): Use predictions from these estimators as inputs for another (combined) model

Stacked Generalizations and Stacked Regressions

- Data analyst rarely knows a priori what the true model is
- Starts by deriving collection of candidate models $\hat{\mu}_{1}, \hat{\mu}_{2}, \ldots, \hat{\mu}_{M}$
- Next step is to select best model based on criterion such as AIC, BIC, or out-of-sample error (e.g., cross-validation)
- David Wolpert (1992): Use predictions from these estimators as inputs for another (combined) model
- Leo Breiman (1996): Operationalized Wolpert's idea by restricting combined models to have form

$$
\sum_{k=1}^{M} \hat{\alpha}_{k} \hat{\mu}_{k}
$$

Stacked Generalizations and Stacked Regressions

- Data analyst rarely knows a priori what the true model is
- Starts by deriving collection of candidate models $\hat{\mu}_{1}, \hat{\mu}_{2}, \ldots, \hat{\mu}_{M}$
- Next step is to select best model based on criterion such as AIC, BIC, or out-of-sample error (e.g., cross-validation)
- David Wolpert (1992): Use predictions from these estimators as inputs for another (combined) model
- Leo Breiman (1996): Operationalized Wolpert's idea by restricting combined models to have form

$$
\sum_{k=1}^{M} \hat{\alpha}_{k} \hat{\mu}_{k}
$$

- Method has found widespread applications (finance, healthcare, commerce, ..., Kaggle competitions)

Stacked Model

- How to learn stacking weights $\hat{\alpha}_{k}$?

Stacked Model

- How to learn stacking weights $\hat{\alpha}_{k}$?
- Breiman suggested cross-validation to estimate test error

$$
\mathbb{E}_{(x, y)}\left[\left(y-\sum_{k=1}^{M} \alpha_{k} \hat{\mu}_{k}(x)\right)^{2}\right]
$$

Stacked Model

- How to learn stacking weights $\hat{\alpha}_{k}$?
- Breiman suggested cross-validation to estimate test error

$$
\mathbb{E}_{(x, y)}\left[\left(y-\sum_{k=1}^{M} \alpha_{k} \hat{\mu}_{k}(x)\right)^{2}\right]
$$

- Could regularize with ridge constraint $\sum_{k=1}^{M} \alpha_{k}^{2}=t$, since estimators $\hat{\mu}_{k}$ are usually highly correlated (trying to estimate same thing)

Stacked Model

- How to learn stacking weights $\hat{\alpha}_{k}$?
- Breiman suggested cross-validation to estimate test error

$$
\mathbb{E}_{(x, y)}\left[\left(y-\sum_{k=1}^{M} \alpha_{k} \hat{\mu}_{k}(x)\right)^{2}\right]
$$

- Could regularize with ridge constraint $\sum_{k=1}^{M} \alpha_{k}^{2}=t$, since estimators $\hat{\mu}_{k}$ are usually highly correlated (trying to estimate same thing)
- Better to make weights non-negative, i.e., $\alpha_{k} \geqslant 0$

Stacked Model

- How to learn stacking weights $\hat{\alpha}_{k}$?
- Breiman suggested cross-validation to estimate test error

$$
\mathbb{E}_{(x, y)}\left[\left(y-\sum_{k=1}^{M} \alpha_{k} \hat{\mu}_{k}(x)\right)^{2}\right]
$$

- Could regularize with ridge constraint $\sum_{k=1}^{M} \alpha_{k}^{2}=t$, since estimators $\hat{\mu}_{k}$ are usually highly correlated (trying to estimate same thing)
- Better to make weights non-negative, i.e., $\alpha_{k} \geqslant 0$
- Minimizers $\hat{\alpha}_{k}$ yield stacked model $\hat{\mu}_{\text {stack }}(x)=\sum_{k=1}^{M} \hat{\alpha}_{k} \hat{\mu}_{k}(x)$

What Breiman Found

This resulting predictor $\sum_{k=1}^{M} \hat{\alpha}_{k} \hat{\mu}_{k}(x)$ appears to almost always have lower prediction error than the single prediction $\hat{\mu}_{k}$ having lowest cross-validation error. The word "appears" is used because a general proof is not yet in place. - Leo Breiman (1996)

What Breiman Found

This resulting predictor $\sum_{k=1}^{M} \hat{\alpha}_{k} \hat{\mu}_{k}(x)$ appears to almost always have lower prediction error than the single prediction $\hat{\mu}_{k}$ having lowest cross-validation error. The word "appears" is used because a general proof is not yet in place. - Leo Breiman (1996)

Goal of talk is to theoretically confirm this in certain cases

Breiman's Experiments with Nested Regression Trees

- $M=50$ nested regression trees $\hat{\mu}_{k}$ from pruning
- Weights $\hat{\alpha}_{k}$ sum to 0.96

Tabie 2 . Siacking Weights
Table 1. Test Set Prediction Errors

Data Set					
Housing				Ozone	
	Best	Stacked	Best	Stacked	
Error	20.9	19.0	23.9	21.6	

\# Terminal Nodes	Weight
7	.29
10	.13
23	.13
26	.09
29	.12
34	.20

Breiman's Experiments with Subset Regressions

- $M=40$ linear models $\hat{\mu}_{k}$ from stepwise deletion
- Weights $\hat{\alpha}_{k}$ sum to between 0.7 and 0.9

Statistical Model

- Nonparametric regression with fixed design and known variance σ^{2} :

$$
y_{i}=\mu\left(x_{i}\right)+\sigma \varepsilon_{i}, \quad i=1,2, \ldots, n, \quad \varepsilon_{i} \stackrel{\text { iid }}{\sim} N(0,1)
$$

Statistical Model

- Nonparametric regression with fixed design and known variance σ^{2} :

$$
y_{i}=\mu\left(x_{i}\right)+\sigma \varepsilon_{i}, \quad i=1,2, \ldots, n, \quad \varepsilon i \stackrel{\text { iid }}{\sim} N(0,1)
$$

- Accuracy of estimator $\hat{\mu}$ measured by in-sample error, i.e.,

$$
\|\mu-\hat{\mu}\|^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(\mu\left(x_{i}\right)-\hat{\mu}\left(x_{i}\right)\right)^{2}
$$

Statistical Model

- Nonparametric regression with fixed design and known variance σ^{2} :

$$
y_{i}=\mu\left(x_{i}\right)+\sigma \varepsilon_{i}, \quad i=1,2, \ldots, n, \quad \varepsilon i \stackrel{\text { iid }}{\sim} N(0,1)
$$

- Accuracy of estimator $\hat{\mu}$ measured by in-sample error, i.e.,

$$
\|\mu-\hat{\mu}\|^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(\mu\left(x_{i}\right)-\hat{\mu}\left(x_{i}\right)\right)^{2}
$$

- Training error of $\hat{\mu}$ is

$$
\|y-\hat{\mu}\|^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\hat{\mu}\left(x_{i}\right)\right)^{2}
$$

Best (Top-performing) Single Model

- Suppose $\hat{\mu}_{k}$ is least-squares projection of y onto (fixed) space \mathcal{A}_{k} of dimension d_{k}

Best (Top-performing) Single Model

- Suppose $\hat{\mu}_{k}$ is least-squares projection of y onto (fixed) space \mathcal{A}_{k} of dimension d_{k}
- Define best single model $\hat{\mu}_{\text {best }}$ as $\hat{\mu}_{\hat{k}}$, where

$$
\hat{k} \in \underset{k=1,2, \ldots, M}{\arg \min }\left\|y-\hat{\mu}_{k}\right\|^{2}+\lambda \frac{\sigma^{2} d_{k}}{n}
$$

Best (Top-performing) Single Model

- Suppose $\hat{\mu}_{k}$ is least-squares projection of y onto (fixed) space \mathcal{A}_{k} of dimension d_{k}
- Define best single model $\hat{\mu}_{\text {best }}$ as $\hat{\mu}_{\hat{k}}$, where

$$
\hat{k} \in \underset{k=1,2, \ldots, M}{\arg \min }\left\|y-\hat{\mu}_{k}\right\|^{2}+\lambda \frac{\sigma^{2} d_{k}}{n}
$$

- Choosing $\lambda=2$ corresponds to model selected by AIC, Mallows's C_{p}

Best (Top-performing) Single Model

- Suppose $\hat{\mu}_{k}$ is least-squares projection of y onto (fixed) space \mathcal{A}_{k} of dimension d_{k}
- Define best single model $\hat{\mu}_{\text {best }}$ as $\hat{\mu}_{\hat{k}}$, where

$$
\hat{k} \in \underset{k=1,2, \ldots, M}{\arg \min }\left\|y-\hat{\mu}_{k}\right\|^{2}+\lambda \frac{\sigma^{2} d_{k}}{n}
$$

- Choosing $\lambda=2$ corresponds to model selected by AIC, Mallows's C_{p}
- Choosing $\lambda=\log (n)$ corresponds to model selected by BIC

Best (Top-performing) Single Model

- Suppose $\hat{\mu}_{k}$ is least-squares projection of y onto (fixed) space \mathcal{A}_{k} of dimension d_{k}
- Define best single model $\hat{\mu}_{\text {best }}$ as $\hat{\mu}_{\hat{k}}$, where

$$
\hat{k} \in \underset{k=1,2, \ldots, M}{\arg \min }\left\|y-\hat{\mu}_{k}\right\|^{2}+\lambda \frac{\sigma^{2} d_{k}}{n}
$$

- Choosing $\lambda=2$ corresponds to model selected by AIC, Mallows's C_{p}
- Choosing $\lambda=\log (n)$ corresponds to model selected by BIC
- In certain cases, criteria will asymptotically select same model as leave-one-out cross-validation

Best (Top-performing) Single Model

- Suppose $\hat{\mu}_{k}$ is least-squares projection of y onto (fixed) space \mathcal{A}_{k} of dimension d_{k}
- Define best single model $\hat{\mu}_{\text {best }}$ as $\hat{\mu}_{\hat{k}}$, where

$$
\hat{k} \in \underset{k=1,2, \ldots, M}{\arg \min }\left\|y-\hat{\mu}_{k}\right\|^{2}+\lambda \frac{\sigma^{2} d_{k}}{n}
$$

- Choosing $\lambda=2$ corresponds to model selected by AIC, Mallows's C_{p}
- Choosing $\lambda=\log (n)$ corresponds to model selected by BIC
- In certain cases, criteria will asymptotically select same model as leave-one-out cross-validation
- Will describe performance of $\hat{\mu}_{\text {stack }}$ relative to $\hat{\mu}_{\text {best }}$

Nested Regressions

- Among various model structures, Breiman focused on stacking

Nested Regressions

- Among various model structures, Breiman focused on stacking

1. Decision trees resulting from pruning large tree upwards

Nested Regressions

- Among various model structures, Breiman focused on stacking

1. Decision trees resulting from pruning large tree upwards
2. Linear regressions resulting from stepwise deletion

Nested Regressions

- Among various model structures, Breiman focused on stacking

1. Decision trees resulting from pruning large tree upwards
2. Linear regressions resulting from stepwise deletion

- In both cases, estimators $\hat{\mu}_{k}$ are least-squares projections of y onto nested subspaces $\mathcal{A}_{1} \subset \mathcal{A}_{2} \subset \cdots \subset \mathcal{A}_{M}$

Nested Regressions

- Among various model structures, Breiman focused on stacking

1. Decision trees resulting from pruning large tree upwards
2. Linear regressions resulting from stepwise deletion

- In both cases, estimators $\hat{\mu}_{k}$ are least-squares projections of y onto nested subspaces $\mathcal{A}_{1} \subset \mathcal{A}_{2} \subset \cdots \subset \mathcal{A}_{M}$
- Because models are nested,

$$
d_{1}<d_{2}<\cdots<d_{M}
$$

and

$$
\left\|\boldsymbol{y}-\hat{\mu}_{M}\right\|^{2}<\cdots<\left\|\boldsymbol{y}-\hat{\mu}_{2}\right\|^{2}<\left\|\boldsymbol{y}-\hat{\mu}_{1}\right\|^{2}
$$

Learning Stacking Weights

- Ideally want weights to minimize expected in-sample error

$$
\operatorname{Err}(\boldsymbol{\alpha})=\mathbb{E}\left[\left\|\mu-\sum_{k=1}^{M} \alpha_{k} \hat{\mu}_{k}\right\|^{2}\right],
$$

subject to non-negativity constraint $\alpha_{k} \geqslant 0$

Learning Stacking Weights

- Ideally want weights to minimize expected in-sample error

$$
\operatorname{Err}(\boldsymbol{\alpha})=\mathbb{E}\left[\left\|\mu-\sum_{k=1}^{M} \alpha_{k} \hat{\mu}_{k}\right\|^{2}\right]
$$

subject to non-negativity constraint $\alpha_{k} \geqslant 0$

- Unbiased estimator of error

$$
\operatorname{Err}(\boldsymbol{\alpha})=\mathbb{E}\left[R(\boldsymbol{\alpha})+\frac{2 \sigma^{2}}{n} \operatorname{df}(\boldsymbol{\alpha})-\sigma^{2}\right]
$$

Learning Stacking Weights

- Ideally want weights to minimize expected in-sample error

$$
\operatorname{Err}(\boldsymbol{\alpha})=\mathbb{E}\left[\left\|\mu-\sum_{k=1}^{M} \alpha_{k} \hat{\mu}_{k}\right\|^{2}\right],
$$

subject to non-negativity constraint $\alpha_{k} \geqslant 0$

- Unbiased estimator of error

$$
\operatorname{Err}(\boldsymbol{\alpha})=\mathbb{E}\left[R(\boldsymbol{\alpha})+\frac{2 \sigma^{2}}{n} \operatorname{df}(\boldsymbol{\alpha})-\sigma^{2}\right]
$$

- Training error $R(\alpha)=\left\|y-\sum_{k=1}^{M} \alpha_{k} \hat{\mu}_{k}\right\|^{2}$

Learning Stacking Weights

- Ideally want weights to minimize expected in-sample error

$$
\operatorname{Err}(\boldsymbol{\alpha})=\mathbb{E}\left[\left\|\mu-\sum_{k=1}^{M} \alpha_{k} \hat{\mu}_{k}\right\|^{2}\right],
$$

subject to non-negativity constraint $\alpha_{k} \geqslant 0$

- Unbiased estimator of error

$$
\operatorname{Err}(\boldsymbol{\alpha})=\mathbb{E}\left[R(\boldsymbol{\alpha})+\frac{2 \sigma^{2}}{n} \operatorname{df}(\boldsymbol{\alpha})-\sigma^{2}\right]
$$

- Training error $R(\boldsymbol{\alpha})=\left\|y-\sum_{k=1}^{M} \alpha_{k} \hat{\mu}_{k}\right\|^{2}$
- Degrees of freedom $\operatorname{df}(\boldsymbol{\alpha})=\sum_{k=1}^{M} \alpha_{k} d_{k}$

First Attempt

- Solve quadratic program with linear constraints:

$$
\begin{array}{ll}
\text { minimize } & R(\alpha)+\frac{2 \sigma^{2}}{n} \operatorname{df}(\alpha)-\sigma^{2} \\
\text { subject to } & \alpha_{k} \geqslant 0, \quad k=1,2, \ldots, M
\end{array}
$$

First Attempt

- Solve quadratic program with linear constraints:

$$
\begin{array}{ll}
\text { minimize } & R(\boldsymbol{\alpha})+\frac{2 \sigma^{2}}{n} \operatorname{df}(\boldsymbol{\alpha})-\sigma^{2} \\
\text { subject to } & \alpha_{k} \geqslant 0, \quad k=1,2, \ldots, M
\end{array}
$$

- Solution $\hat{\alpha}$ satisfies
$\mathbb{E}[\operatorname{Err}(\hat{\boldsymbol{\alpha}})]=\mathbb{E}\left[R(\hat{\boldsymbol{\alpha}})+\frac{2 \sigma^{2}}{n} \operatorname{df}(\hat{\boldsymbol{\alpha}})-\sigma^{2}+\frac{4 \sigma^{2}}{n}\|\hat{\boldsymbol{\alpha}}\|_{\ell_{0}}+\right.$ lower order terms $]$

First Attempt

- Solve quadratic program with linear constraints:

$$
\begin{array}{ll}
\text { minimize } & R(\boldsymbol{\alpha})+\frac{2 \sigma^{2}}{n} \operatorname{df}(\boldsymbol{\alpha})-\sigma^{2} \\
\text { subject to } & \alpha_{k} \geqslant 0, \quad k=1,2, \ldots, M
\end{array}
$$

- Solution $\hat{\alpha}$ satisfies
$\mathbb{E}[\operatorname{Err}(\hat{\boldsymbol{\alpha}})]=\mathbb{E}\left[R(\hat{\boldsymbol{\alpha}})+\frac{2 \sigma^{2}}{n} \operatorname{df}(\hat{\boldsymbol{\alpha}})-\sigma^{2}+\frac{4 \sigma^{2}}{n}\|\hat{\boldsymbol{\alpha}}\|_{\ell_{0}}+\right.$ lower order terms $]$
- So $R(\hat{\boldsymbol{\alpha}})+\frac{2 \sigma^{2}}{n} \operatorname{df}(\hat{\boldsymbol{\alpha}})-\sigma^{2}$ is no longer unbiased estimator of error for stacked model with adaptive weights

Second Attempt

- Let $\operatorname{dim}(\boldsymbol{\alpha})$ denote dimension of stacked model, $\max _{k}\left\{d_{k}: \alpha_{k} \neq 0\right\}$

Second Attempt

- Let $\operatorname{dim}(\boldsymbol{\alpha})$ denote dimension of stacked model, $\max _{k}\left\{d_{k}: \alpha_{k} \neq 0\right\}$
- Solve similar (but non-convex) program:

$$
\begin{array}{ll}
\operatorname{minimize} & R(\boldsymbol{\alpha})+\frac{2 \sigma^{2}}{n} \operatorname{df}(\boldsymbol{\alpha})-\sigma^{2}+\frac{\sigma^{2}}{n} \frac{(\lambda-1)^{2}}{\lambda} \operatorname{dim}(\boldsymbol{\alpha}) \\
\text { subject to } & \alpha_{k} \geqslant 0, \quad k=1,2, \ldots, M
\end{array}
$$

Second Attempt

- Let $\operatorname{dim}(\boldsymbol{\alpha})$ denote dimension of stacked model, $\max _{k}\left\{d_{k}: \alpha_{k} \neq 0\right\}$
- Solve similar (but non-convex) program:

$$
\begin{array}{ll}
\operatorname{minimize} & R(\boldsymbol{\alpha})+\frac{2 \sigma^{2}}{n} \operatorname{df}(\boldsymbol{\alpha})-\sigma^{2}+\frac{\sigma^{2}}{n} \frac{(\lambda-1)^{2}}{\lambda} \operatorname{dim}(\boldsymbol{\alpha}) \\
\text { subject to } & \alpha_{k} \geqslant 0, \quad k=1,2, \ldots, M
\end{array}
$$

- Solvable in $O(M)$ time by reducing problem to isotonic regression
- Same complexity as finding best single model

Second Attempt

- Let $\operatorname{dim}(\boldsymbol{\alpha})$ denote dimension of stacked model, $\max _{k}\left\{d_{k}: \alpha_{k} \neq 0\right\}$
- Solve similar (but non-convex) program:

$$
\begin{array}{ll}
\operatorname{minimize} & R(\boldsymbol{\alpha})+\frac{2 \sigma^{2}}{n} \operatorname{df}(\boldsymbol{\alpha})-\sigma^{2}+\frac{\sigma^{2}}{n} \frac{(\lambda-1)^{2}}{\lambda} \operatorname{dim}(\boldsymbol{\alpha}) \\
\text { subject to } & \alpha_{k} \geqslant 0, \quad k=1,2, \ldots, M
\end{array}
$$

- Solvable in $O(M)$ time by reducing problem to isotonic regression
- Same complexity as finding best single model
- Solution satisfies $\sum_{k=1}^{M} \hat{\alpha}_{k}<1$, despite no explicit sum constraint

Reduction to Isotonic Regression

- Due to nested structure and non-negative constraints, problem reduces to weighted isotonic regression:

$$
\begin{array}{ll}
\text { minimize } & \sum_{k=1}^{M} w_{k}\left(z_{k}-\gamma_{k}\right)^{2} \\
\text { subject to } & \gamma_{1} \leqslant \gamma_{2} \leqslant \cdots \leqslant \gamma_{M},
\end{array}
$$

where $w_{k}=\left\|y-\hat{\mu}_{k-1}\right\|^{2}-\left\|y-\hat{\mu}_{k}\right\|^{2}$ and $z_{k}=\left(d_{k}-d_{k-1}\right) / w_{k}$

Reduction to Isotonic Regression

- Due to nested structure and non-negative constraints, problem reduces to weighted isotonic regression:

$$
\begin{array}{ll}
\text { minimize } & \sum_{k=1}^{M} w_{k}\left(z_{k}-\gamma_{k}\right)^{2} \\
\text { subject to } & \gamma_{1} \leqslant \gamma_{2} \leqslant \cdots \leqslant \gamma_{M},
\end{array}
$$

where $w_{k}=\left\|y-\hat{\mu}_{k-1}\right\|^{2}-\left\|y-\hat{\mu}_{k}\right\|^{2}$ and $z_{k}=\left(d_{k}-d_{k-1}\right) / w_{k}$

- Closed-form solution:

$$
\hat{\gamma}_{k}=\frac{\sigma^{2}}{n} \min _{k \leqslant i \leqslant M} \max _{0 \leqslant j<k} \frac{d_{i}-d_{j}}{\left\|y-\hat{\mu}_{j}\right\|^{2}-\left\|y-\hat{\mu}_{i}\right\|^{2}}
$$

Closed-Form Representations of $\hat{\mu}_{\text {stack }}$ and $\hat{\mu}_{\text {best }}$

Theorem (Chen, K., \& Tan, 2023)

The following representations hold:

$$
\begin{gathered}
\hat{\mu}_{\text {best }}(x)=\sum_{k=1}^{M}\left(\hat{\mu}_{k}(x)-\hat{\mu}_{k-1}(x)\right) \mathbf{1}\left(\hat{\gamma}_{k}<1 / \lambda\right), \\
\hat{\mu}_{\text {stack }}(x)=\sum_{k=1}^{M}\left(\hat{\mu}_{k}(x)-\hat{\mu}_{k-1}(x)\right)\left(1-\hat{\gamma}_{k}\right) \mathbf{1}\left(\hat{\gamma}_{k}<1 / \lambda\right)
\end{gathered}
$$

Closed-Form Representations of $\hat{\mu}_{\text {stack }}$ and $\hat{\mu}_{\text {best }}$

Theorem (Chen, K., \& Tan, 2023)

The following representations hold:

$$
\begin{gathered}
\hat{\mu}_{\text {best }}(x)=\sum_{k=1}^{M}\left(\hat{\mu}_{k}(x)-\hat{\mu}_{k-1}(x)\right) \mathbf{1}\left(\hat{\gamma}_{k}<1 / \lambda\right), \\
\hat{\mu}_{\text {stack }}(x)=\sum_{k=1}^{M}\left(\hat{\mu}_{k}(x)-\hat{\mu}_{k-1}(x)\right)\left(1-\hat{\gamma}_{k}\right) \mathbf{1}\left(\hat{\gamma}_{k}<1 / \lambda\right)
\end{gathered}
$$

- Best single model performs hard thresholding on predictive differences $\hat{\mu}_{k}(x)-\hat{\mu}_{k-1}(x)$ across successive sub-models

Closed-Form Representations of $\hat{\mu}_{\text {stack }}$ and $\hat{\mu}_{\text {best }}$

Theorem (Chen, K., \& Tan, 2023)

The following representations hold:

$$
\begin{gathered}
\hat{\mu}_{\text {best }}(x)=\sum_{k=1}^{M}\left(\hat{\mu}_{k}(x)-\hat{\mu}_{k-1}(x)\right) \mathbf{1}\left(\hat{\gamma}_{k}<1 / \lambda\right), \\
\hat{\mu}_{\text {stack }}(x)=\sum_{k=1}^{M}\left(\hat{\mu}_{k}(x)-\hat{\mu}_{k-1}(x)\right)\left(1-\hat{\gamma}_{k}\right) \mathbf{1}\left(\hat{\gamma}_{k}<1 / \lambda\right)
\end{gathered}
$$

- Best single model performs hard thresholding on predictive differences $\hat{\mu}_{k}(x)-\hat{\mu}_{k-1}(x)$ across successive sub-models
- Stacked model additionally shrinks these predictive differences towards zero by factor $\left(1-\hat{\gamma}_{k}\right)$

Closed-Form Representations of $\hat{\mu}_{\text {stack }}$ and $\hat{\mu}_{\text {best }}$

Theorem (Chen, K., \& Tan, 2023)

The following representations hold:

$$
\begin{gathered}
\hat{\mu}_{\text {best }}(x)=\sum_{k=1}^{M}\left(\hat{\mu}_{k}(x)-\hat{\mu}_{k-1}(x)\right) \mathbf{1}\left(\hat{\gamma}_{k}<1 / \lambda\right), \\
\hat{\mu}_{\text {stack }}(x)=\sum_{k=1}^{M}\left(\hat{\mu}_{k}(x)-\hat{\mu}_{k-1}(x)\right)\left(1-\hat{\gamma}_{k}\right) \mathbf{1}\left(\hat{\gamma}_{k}<1 / \lambda\right)
\end{gathered}
$$

- Best single model performs hard thresholding on predictive differences $\hat{\mu}_{k}(x)-\hat{\mu}_{k-1}(x)$ across successive sub-models
- Stacked model additionally shrinks these predictive differences towards zero by factor $\left(1-\hat{\gamma}_{k}\right)$
- Performs model selection and adaptive shrinkage simultaneously

Main Result

Theorem (Chen, K., \& Tan, 2023)

If $d_{k} \geqslant d_{k-1}+4$ for all k, then

$$
\mathbb{E}\left[\left\|\mu-\hat{\mu}_{\text {stack }}\right\|^{2}\right]<\mathbb{E}\left[\left\|\mu-\hat{\mu}_{\text {best }}\right\|^{2}\right]
$$

- Theoretically confirms Breiman's empirical findings

Error Gap Between $\hat{\mu}_{\text {stack }}$ and $\hat{\mu}_{\text {best }}$

- Error gap $\mathbb{E}\left[\left\|\mu-\hat{\mu}_{\text {best }}\right\|^{2}-\left\|\mu-\hat{\mu}_{\text {stack }}\right\|^{2}\right]$ can be lower bounded by

$$
\frac{\sigma^{2}}{n} \mathbb{E}\left[\min _{1 \leqslant k \leqslant M} \frac{\left(d_{k}-4 k\right)^{2}}{\left(n / \sigma^{2}\right)\left(\|y\|^{2}-\left\|y-\hat{\mu}_{k}\right\|^{2}\right)}\right]
$$

Error Gap Between $\hat{\mu}_{\text {stack }}$ and $\hat{\mu}_{\text {best }}$

- Error gap $\mathbb{E}\left[\left\|\mu-\hat{\mu}_{\text {best }}\right\|^{2}-\left\|\mu-\hat{\mu}_{\text {stack }}\right\|^{2}\right]$ can be lower bounded by

$$
\frac{\sigma^{2}}{n} \mathbb{E}\left[\min _{1 \leqslant k \leqslant M} \frac{\left(d_{k}-4 k\right)^{2}}{\left(n / \sigma^{2}\right)\left(\|y\|^{2}-\left\|y-\hat{\mu}_{k}\right\|^{2}\right)}\right]
$$

- Similar to improvement from applying James-Stein shrinkage (non-adaptively) to individual model

Error Gap Between $\hat{\mu}_{\text {stack }}$ and $\hat{\mu}_{\text {best }}$

- Error gap $\mathbb{E}\left[\left\|\mu-\hat{\mu}_{\text {best }}\right\|^{2}-\left\|\mu-\hat{\mu}_{\text {stack }}\right\|^{2}\right]$ can be lower bounded by

$$
\frac{\sigma^{2}}{n} \mathbb{E}\left[\min _{1 \leqslant k \leqslant M} \frac{\left(d_{k}-4 k\right)^{2}}{\left(n / \sigma^{2}\right)\left(\|y\|^{2}-\left\|y-\hat{\mu}_{k}\right\|^{2}\right)}\right]
$$

- Similar to improvement from applying James-Stein shrinkage (non-adaptively) to individual model
- As with James-Stein shrinkage, gap tends to be larger when signal-to-noise ratio $\|\mu\| / \sigma$ or sample size are small

Conclusion

In past statistical work, all the focus has been on selecting the "best" single model from a class of models. We may need to shift our thinking to the possibility of forming combinations of models... - Leo Breiman (1996)

Future Work

- Stack non-nested models, such as ridge regressions

Future Work

- Stack non-nested models, such as ridge regressions
- Characterize complexity of stacked model (usually larger than best single model)

Future Work

- Stack non-nested models, such as ridge regressions
- Characterize complexity of stacked model (usually larger than best single model)
- Connect to other ensemble methods like random forests (randomization + model selection)

Thank you!

Chen, K., \& Tan, Error Reduction from Stacked Regressions (2023) Available at klusowski.princeton.edu

