

Error Reduction from Stacked Regressions

Jason M. Klusowski

Operations Research and Financial Engineering (ORFE)

Joint work with Xin Chen (Princeton) & Yan Shuo Tan (NUS)

· Data analyst rarely knows a priori what the true model is

- · Data analyst rarely knows a priori what the true model is
- Starts by deriving collection of candidate models $\hat{\mu}_1, \hat{\mu}_2, \dots, \hat{\mu}_M$

- · Data analyst rarely knows a priori what the true model is
- Starts by deriving collection of candidate models $\hat{\mu}_1, \hat{\mu}_2, \dots, \hat{\mu}_M$
- Next step is to select best model based on criterion such as AIC, BIC, or out-of-sample error (e.g., cross-validation)

- · Data analyst rarely knows a priori what the true model is
- Starts by deriving collection of candidate models $\hat{\mu}_1, \hat{\mu}_2, \dots, \hat{\mu}_M$
- Next step is to select best model based on criterion such as AIC, BIC, or out-of-sample error (e.g., cross-validation)
- David Wolpert (1992): Use predictions from these estimators as inputs for another (combined) model

- · Data analyst rarely knows a priori what the true model is
- Starts by deriving collection of candidate models $\hat{\mu}_1, \hat{\mu}_2, \dots, \hat{\mu}_M$
- Next step is to select best model based on criterion such as AIC, BIC, or out-of-sample error (e.g., cross-validation)
- David Wolpert (1992): Use predictions from these estimators as inputs for another (combined) model
- Leo Breiman (1996): Operationalized Wolpert's idea by restricting combined models to have form

$$\sum_{k=1}^{M} \hat{\alpha}_k \hat{\mu}_k$$

- · Data analyst rarely knows a priori what the true model is
- Starts by deriving collection of candidate models $\hat{\mu}_1, \hat{\mu}_2, \dots, \hat{\mu}_M$
- Next step is to select best model based on criterion such as AIC, BIC, or out-of-sample error (e.g., cross-validation)
- David Wolpert (1992): Use predictions from these estimators as inputs for another (combined) model
- Leo Breiman (1996): Operationalized Wolpert's idea by restricting combined models to have form

$$\sum_{k=1}^{M} \hat{\alpha}_k \hat{\mu}_k$$

• Method has found widespread applications (finance, healthcare, commerce, ..., Kaggle competitions)

• How to learn stacking weights $\hat{\alpha}_k$?

- How to learn stacking weights $\hat{\alpha}_k$?
- · Breiman suggested cross-validation to estimate test error

$$\mathbb{E}_{(x,y)}\left[\left(y-\sum_{k=1}^{M}\alpha_{k}\hat{\mu}_{k}(x)\right)^{2}\right]$$

- How to learn stacking weights $\hat{\alpha}_k$?
- · Breiman suggested cross-validation to estimate test error

$$\mathbb{E}_{(x,y)}\left[\left(y-\sum_{k=1}^{M}\alpha_{k}\hat{\mu}_{k}(x)\right)^{2}\right]$$

• Could regularize with ridge constraint $\sum_{k=1}^{M} \alpha_k^2 = t$, since estimators $\hat{\mu}_k$ are usually highly correlated (trying to estimate same thing)

- How to learn stacking weights $\hat{\alpha}_k$?
- · Breiman suggested cross-validation to estimate test error

$$\mathbb{E}_{(x,y)}\left[\left(y-\sum_{k=1}^{M}\alpha_{k}\hat{\mu}_{k}(x)\right)^{2}\right]$$

- Could regularize with ridge constraint $\sum_{k=1}^{M} \alpha_k^2 = t$, since estimators $\hat{\mu}_k$ are usually highly correlated (trying to estimate same thing)
- Better to make weights non-negative, i.e., $\alpha_k \ge 0$

- How to learn stacking weights $\hat{\alpha}_k$?
- · Breiman suggested cross-validation to estimate test error

$$\mathbb{E}_{(x,y)}\left[\left(y-\sum_{k=1}^{M}\alpha_k\hat{\mu}_k(x)\right)^2\right]$$

- Could regularize with ridge constraint $\sum_{k=1}^{M} \alpha_k^2 = t$, since estimators $\hat{\mu}_k$ are usually highly correlated (trying to estimate same thing)
- Better to make weights non-negative, i.e., $\alpha_k \ge 0$
- Minimizers $\hat{\alpha}_k$ yield stacked model $\hat{\mu}_{\text{stack}}(x) = \sum_{k=1}^{M} \hat{\alpha}_k \hat{\mu}_k(x)$

This resulting predictor $\sum_{k=1}^{M} \hat{\alpha}_k \hat{\mu}_k(x)$ appears to almost always have lower prediction error than the single prediction $\hat{\mu}_k$ having lowest cross-validation error. The word "appears" is used because a general proof is not yet in place. — Leo Breiman (1996) This resulting predictor $\sum_{k=1}^{M} \hat{\alpha}_k \hat{\mu}_k(x)$ appears to almost always have lower prediction error than the single prediction $\hat{\mu}_k$ having lowest cross-validation error. The word "appears" is used because a general proof is not yet in place. — Leo Breiman (1996)

Goal of talk is to theoretically confirm this in certain cases

- M = 50 nested regression trees $\hat{\mu}_k$ from pruning
- Weights $\hat{\alpha}_k$ sum to 0.96

Data Set				
	Housing		Ozone	
	Best	Stacked	Best	Stacked
Error	20.9	19.0	23.9	21.6

Table 1 Test Set Prediction Errors

Table 2. Stacking Weights

# Terminal Nodes	Weight	
7	.29	
10	.13	
23	.13	
26	.09	
29	.12	
34	.20	

- M = 40 linear models $\hat{\mu}_k$ from stepwise deletion
- Weights $\hat{\alpha}_k$ sum to between 0.7 and 0.9

• Nonparametric regression with fixed design and known variance σ^2 :

$$y_i = \mu(x_i) + \sigma \varepsilon_i, \quad i = 1, 2, ..., n, \quad \varepsilon_i \stackrel{\text{iid}}{\sim} N(0, 1)$$

• Nonparametric regression with fixed design and known variance σ^2 :

$$y_i = \mu(x_i) + \sigma \varepsilon_i, \quad i = 1, 2, \dots, n, \quad \varepsilon_i \stackrel{\text{iid}}{\sim} N(0, 1)$$

• Accuracy of estimator $\hat{\mu}$ measured by in-sample error, i.e.,

$$\|\mu - \hat{\mu}\|^2 = \frac{1}{n} \sum_{i=1}^n (\mu(x_i) - \hat{\mu}(x_i))^2$$

• Nonparametric regression with fixed design and known variance σ^2 :

$$\mathbf{y}_i = \mu(\mathbf{x}_i) + \sigma \varepsilon_i, \quad i = 1, 2, \dots, n, \quad \varepsilon_i \stackrel{\text{iid}}{\sim} N(0, 1)$$

• Accuracy of estimator $\hat{\mu}$ measured by in-sample error, i.e.,

$$\|\mu - \hat{\mu}\|^2 = \frac{1}{n} \sum_{i=1}^n (\mu(x_i) - \hat{\mu}(x_i))^2$$

- Training error of $\hat{\mu}$ is

$$\|y - \hat{\mu}\|^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\mu}(x_i))^2$$

- Define best single model $\hat{\mu}_{\text{best}}$ as $\hat{\mu}_{\hat{k}}$, where

$$\hat{k} \in \underset{k=1,2,\dots,M}{\operatorname{arg\,min}} \|y - \hat{\mu}_k\|^2 + \lambda \frac{\sigma^2 d_k}{n}$$

- Define best single model $\hat{\mu}_{\text{best}}$ as $\hat{\mu}_{\hat{k}}$, where

$$\hat{k} \in \underset{k=1,2,\dots,M}{\operatorname{arg\,min}} \|y - \hat{\mu}_k\|^2 + \lambda \frac{\sigma^2 d_k}{n}$$

• Choosing $\lambda = 2$ corresponds to model selected by AIC, Mallows's C_p

- Define best single model $\hat{\mu}_{\text{best}}$ as $\hat{\mu}_{\hat{k}}$, where

$$\hat{k} \in \underset{k=1,2,\dots,M}{\operatorname{arg\,min}} \|y - \hat{\mu}_k\|^2 + \lambda \frac{\sigma^2 d_k}{n}$$

- Choosing $\lambda = 2$ corresponds to model selected by AIC, Mallows's C_p
- Choosing $\lambda = \log(n)$ corresponds to model selected by BIC

- Define best single model $\hat{\mu}_{\text{best}}$ as $\hat{\mu}_{\hat{k}}$, where

$$\hat{k} \in \underset{k=1,2,\dots,M}{\operatorname{arg\,min}} \|y - \hat{\mu}_k\|^2 + \lambda \frac{\sigma^2 d_k}{n}$$

- Choosing $\lambda = 2$ corresponds to model selected by AIC, Mallows's C_p
- Choosing $\lambda = \log(n)$ corresponds to model selected by BIC
- In certain cases, criteria will asymptotically select same model as leave-one-out cross-validation

- Define best single model $\hat{\mu}_{\text{best}}$ as $\hat{\mu}_{\hat{k}}$, where

$$\hat{k} \in \underset{k=1,2,\dots,M}{\operatorname{arg\,min}} \|y - \hat{\mu}_k\|^2 + \lambda \frac{\sigma^2 d_k}{n}$$

- Choosing $\lambda = 2$ corresponds to model selected by AIC, Mallows's C_p
- Choosing $\lambda = \log(n)$ corresponds to model selected by BIC
- In certain cases, criteria will asymptotically select same model as leave-one-out cross-validation
- Will describe performance of $\hat{\mu}_{\text{stack}}$ relative to $\hat{\mu}_{\text{best}}$

· Among various model structures, Breiman focused on stacking

- · Among various model structures, Breiman focused on stacking
 - 1. Decision trees resulting from pruning large tree upwards

- · Among various model structures, Breiman focused on stacking
 - 1. Decision trees resulting from pruning large tree upwards
 - 2. Linear regressions resulting from stepwise deletion

- · Among various model structures, Breiman focused on stacking
 - 1. Decision trees resulting from pruning large tree upwards
 - 2. Linear regressions resulting from stepwise deletion
- In both cases, estimators µ̂_k are least-squares projections of *y* onto nested subspaces A₁ ⊂ A₂ ⊂ · · · ⊂ A_M

- · Among various model structures, Breiman focused on stacking
 - 1. Decision trees resulting from pruning large tree upwards
 - 2. Linear regressions resulting from stepwise deletion
- In both cases, estimators µ̂_k are least-squares projections of *y* onto nested subspaces A₁ ⊂ A₂ ⊂ · · · ⊂ A_M
- · Because models are nested,

$$d_1 < d_2 < \cdots < d_M$$

and

$$\|\mathbf{y} - \hat{\mu}_M\|^2 < \cdots < \|\mathbf{y} - \hat{\mu}_2\|^2 < \|\mathbf{y} - \hat{\mu}_1\|^2$$

· Ideally want weights to minimize expected in-sample error

$$\mathsf{Err}(\boldsymbol{\alpha}) = \mathbb{E}\bigg[\left\|\boldsymbol{\mu} - \sum_{k=1}^{M} \alpha_k \hat{\boldsymbol{\mu}}_k\right\|^2\bigg],$$

subject to non-negativity constraint $\alpha_k \ge 0$

· Ideally want weights to minimize expected in-sample error

$$\mathsf{Err}(\boldsymbol{\alpha}) = \mathbb{E}\bigg[\left\|\boldsymbol{\mu} - \sum_{k=1}^{M} \alpha_k \hat{\boldsymbol{\mu}}_k\right\|^2\bigg],$$

subject to non-negativity constraint $\alpha_k \ge 0$

· Unbiased estimator of error

$$\operatorname{Err}(\alpha) = \mathbb{E}\left[R(\alpha) + \frac{2\sigma^2}{n}\operatorname{df}(\alpha) - \sigma^2\right]$$

· Ideally want weights to minimize expected in-sample error

$$\mathsf{Err}(\boldsymbol{\alpha}) = \mathbb{E}\bigg[\left\|\boldsymbol{\mu} - \sum_{k=1}^{M} \alpha_k \hat{\boldsymbol{\mu}}_k\right\|^2\bigg],$$

subject to non-negativity constraint $\alpha_k \ge 0$

· Unbiased estimator of error

$$\operatorname{Err}(\alpha) = \mathbb{E}\left[R(\alpha) + \frac{2\sigma^2}{n}\operatorname{df}(\alpha) - \sigma^2\right]$$

• Training error
$$R(\alpha) = \left\| y - \sum_{k=1}^{M} \alpha_k \hat{\mu}_k \right\|^2$$

· Ideally want weights to minimize expected in-sample error

$$\mathsf{Err}(\boldsymbol{\alpha}) = \mathbb{E}\bigg[\left\|\boldsymbol{\mu} - \sum_{k=1}^{M} \alpha_k \hat{\boldsymbol{\mu}}_k\right\|^2\bigg],$$

subject to non-negativity constraint $\alpha_k \ge 0$

· Unbiased estimator of error

$$\operatorname{Err}(\alpha) = \mathbb{E}\left[R(\alpha) + \frac{2\sigma^2}{n}\operatorname{df}(\alpha) - \sigma^2\right]$$

• Training error
$$\boldsymbol{R}(\boldsymbol{\alpha}) = \left\| \boldsymbol{y} - \sum_{k=1}^{M} \alpha_k \hat{\mu}_k \right\|^2$$

• Degrees of freedom df(α) = $\sum_{k=1}^{M} \alpha_k d_k$

· Solve quadratic program with linear constraints:

minimize
$$R(\alpha) + \frac{2\sigma^2}{n} df(\alpha) - \sigma^2$$

subject to $\alpha_k \ge 0$, $k = 1, 2, ..., M$

· Solve quadratic program with linear constraints:

minimize
$$R(\alpha) + \frac{2\sigma^2}{n} df(\alpha) - \sigma^2$$

subject to $\alpha_k \ge 0$, $k = 1, 2, ..., M$

- Solution $\hat{\alpha}$ satisfies

$$\mathbb{E}\left[\mathsf{Err}(\hat{\alpha})\right] = \mathbb{E}\left[R(\hat{\alpha}) + \frac{2\sigma^2}{n}\mathsf{df}(\hat{\alpha}) - \sigma^2 + \frac{4\sigma^2}{n}\|\hat{\alpha}\|_{\ell_0} + \text{lower order terms}\right]$$

· Solve quadratic program with linear constraints:

minimize
$$R(\alpha) + \frac{2\sigma^2}{n} df(\alpha) - \sigma^2$$

subject to $\alpha_k \ge 0$, $k = 1, 2, ..., M$

• Solution $\hat{\alpha}$ satisfies

$$\mathbb{E}\left[\mathsf{Err}(\hat{\alpha})\right] = \mathbb{E}\left[R(\hat{\alpha}) + \frac{2\sigma^2}{n}\mathsf{df}(\hat{\alpha}) - \sigma^2 + \frac{4\sigma^2}{n}\|\hat{\alpha}\|_{\ell_0} + \text{lower order terms}\right]$$

• So $R(\hat{\alpha}) + \frac{2\sigma^2}{n} df(\hat{\alpha}) - \sigma^2$ is no longer unbiased estimator of error for stacked model with adaptive weights

• Let dim(α) denote dimension of stacked model, max_k{ $d_k : \alpha_k \neq 0$ }

- Let dim(α) denote dimension of stacked model, max_k{ $d_k : \alpha_k \neq 0$ }
- Solve similar (but non-convex) program:

$$\begin{array}{ll} \mbox{minimize} & R(\alpha) + \frac{2\sigma^2}{n} \mbox{df}(\alpha) - \sigma^2 + \frac{\sigma^2}{n} \frac{(\lambda - 1)^2}{\lambda} \mbox{dim}(\alpha) \\ \mbox{subject to} & \alpha_k \geqslant 0, \quad k = 1, 2, \dots, M \end{array}$$

- Let dim(α) denote dimension of stacked model, max_k{ $d_k : \alpha_k \neq 0$ }
- Solve similar (but non-convex) program:

- Solvable in O(M) time by reducing problem to isotonic regression
 - · Same complexity as finding best single model

- Let dim(α) denote dimension of stacked model, max_k{ $d_k : \alpha_k \neq 0$ }
- Solve similar (but non-convex) program:

- Solvable in O(M) time by reducing problem to isotonic regression
 - · Same complexity as finding best single model
- Solution satisfies $\sum_{k=1}^{M} \hat{\alpha}_k < 1$, despite no explicit sum constraint

• Due to nested structure and non-negative constraints, problem reduces to weighted isotonic regression:

minimize
$$\sum_{k=1}^{M} w_k (z_k - \gamma_k)^2$$

subject to $\gamma_1 \leqslant \gamma_2 \leqslant \cdots \leqslant \gamma_M$,

where $w_k = \|y - \hat{\mu}_{k-1}\|^2 - \|y - \hat{\mu}_k\|^2$ and $z_k = (d_k - d_{k-1})/w_k$

• Due to nested structure and non-negative constraints, problem reduces to weighted isotonic regression:

minimize
$$\sum_{k=1}^{M} w_k (z_k - \gamma_k)^2$$
subject to $\gamma_1 \leqslant \gamma_2 \leqslant \cdots \leqslant \gamma_M$,

A /

where $w_k = \|y - \hat{\mu}_{k-1}\|^2 - \|y - \hat{\mu}_k\|^2$ and $z_k = (d_k - d_{k-1})/w_k$

Closed-form solution:

$$\hat{\gamma}_{k} = \frac{\sigma^{2}}{n} \min_{k \le i \le M} \max_{0 \le j < k} \frac{d_{i} - d_{j}}{\|y - \hat{\mu}_{j}\|^{2} - \|y - \hat{\mu}_{i}\|^{2}}$$

The following representations hold:

$$\hat{\mu}_{\textit{best}}(\boldsymbol{x}) = \sum_{k=1}^{M} (\hat{\mu}_{k}(\boldsymbol{x}) - \hat{\mu}_{k-1}(\boldsymbol{x})) \mathbf{1}(\hat{\gamma}_{k} < 1/\lambda),$$

$$\hat{\mu}_{stack}(x) = \sum_{k=1}^{M} (\hat{\mu}_k(x) - \hat{\mu}_{k-1}(x))(1 - \hat{\gamma}_k) \mathbf{1}(\hat{\gamma}_k < 1/\lambda)$$

The following representations hold:

$$\hat{\mu}_{best}(x) = \sum_{k=1}^{M} (\hat{\mu}_k(x) - \hat{\mu}_{k-1}(x)) \mathbf{1}(\hat{\gamma}_k < 1/\lambda),$$

$$\hat{\mu}_{stack}(x) = \sum_{k=1}^{M} (\hat{\mu}_{k}(x) - \hat{\mu}_{k-1}(x))(1 - \hat{\gamma}_{k})\mathbf{1}(\hat{\gamma}_{k} < 1/\lambda)$$

 Best single model performs hard thresholding on predictive differences μ̂_k(x) – μ̂_{k-1}(x) across successive sub-models

The following representations hold:

$$\hat{\mu}_{best}(x) = \sum_{k=1}^{M} (\hat{\mu}_k(x) - \hat{\mu}_{k-1}(x)) \mathbf{1}(\hat{\gamma}_k < 1/\lambda),$$

$$\hat{\mu}_{stack}(x) = \sum_{k=1}^{M} (\hat{\mu}_{k}(x) - \hat{\mu}_{k-1}(x))(1 - \hat{\gamma}_{k})\mathbf{1}(\hat{\gamma}_{k} < 1/\lambda)$$

- Best single model performs hard thresholding on predictive differences μ̂_k(x) – μ̂_{k-1}(x) across successive sub-models
- Stacked model additionally shrinks these predictive differences towards zero by factor $(1 \hat{\gamma}_k)$

The following representations hold:

$$\hat{\mu}_{best}(x) = \sum_{k=1}^{M} (\hat{\mu}_k(x) - \hat{\mu}_{k-1}(x)) \mathbf{1}(\hat{\gamma}_k < 1/\lambda),$$

$$\hat{\mu}_{stack}(x) = \sum_{k=1}^{M} (\hat{\mu}_{k}(x) - \hat{\mu}_{k-1}(x))(1 - \hat{\gamma}_{k})\mathbf{1}(\hat{\gamma}_{k} < 1/\lambda)$$

- Best single model performs hard thresholding on predictive differences

 \u03c6 k_k(x) - \u03c6 k_{k-1}(x)
 across successive sub-models
- Stacked model additionally shrinks these predictive differences towards zero by factor $(1 \hat{\gamma}_k)$
- Performs model selection and adaptive shrinkage simultaneously

Theorem (Chen, K., & Tan, 2023) If $d_k \ge d_{k-1} + 4$ for all k, then $\mathbb{E}[\|\mu - \hat{\mu}_{\text{stack}}\|^2] < \mathbb{E}[\|\mu - \hat{\mu}_{\text{best}}\|^2]$

· Theoretically confirms Breiman's empirical findings

- Error gap $\mathbb{E}\big[\|\mu-\hat{\mu}_{\rm best}\|^2-\|\mu-\hat{\mu}_{\rm stack}\|^2\big]$ can be lower bounded by

$$\frac{\sigma^2}{n} \mathbb{E}\left[\min_{1 \le k \le M} \frac{(d_k - 4k)^2}{(n/\sigma^2)(\|\mathbf{y}\|^2 - \|\mathbf{y} - \hat{\mu}_k\|^2)}\right]$$

- Error gap $\mathbb{E}\big[\|\mu-\hat{\mu}_{\rm best}\|^2-\|\mu-\hat{\mu}_{\rm stack}\|^2\big]$ can be lower bounded by

$$\frac{\sigma^2}{n} \mathbb{E}\left[\min_{1 \le k \le M} \frac{(d_k - 4k)^2}{(n/\sigma^2)(\|\mathbf{y}\|^2 - \|\mathbf{y} - \hat{\mu}_k\|^2)}\right]$$

• Similar to improvement from applying James-Stein shrinkage (non-adaptively) to individual model

- Error gap $\mathbb{E}\big[\|\mu-\hat{\mu}_{\rm best}\|^2-\|\mu-\hat{\mu}_{\rm stack}\|^2\big]$ can be lower bounded by

$$\frac{\sigma^2}{n} \mathbb{E}\left[\min_{1 \le k \le M} \frac{(d_k - 4k)^2}{(n/\sigma^2)(\|\mathbf{y}\|^2 - \|\mathbf{y} - \hat{\mu}_k\|^2)}\right]$$

- Similar to improvement from applying James-Stein shrinkage (non-adaptively) to individual model
- As with James-Stein shrinkage, gap tends to be larger when signal-to-noise ratio $\|\mu\|/\sigma$ or sample size are small

In past statistical work, all the focus has been on selecting the "best" single model from a class of models. We may need to shift our thinking to the possibility of forming combinations of models... — Leo Breiman (1996)

· Stack non-nested models, such as ridge regressions

- · Stack non-nested models, such as ridge regressions
- Characterize complexity of stacked model (usually larger than best single model)

- · Stack non-nested models, such as ridge regressions
- Characterize complexity of stacked model (usually larger than best single model)
- Connect to other ensemble methods like random forests (randomization + model selection)

Chen, K., & Tan, Error Reduction from Stacked Regressions (2023)

Available at klusowski.princeton.edu

