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» Method has found widespread applications (finance, healthcare,
commerce, ..., Kaggle competitions)
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Stacked Model

* How to learn stacking weights &, ?

» Breiman suggested cross-validation to estimate test error

M 2
IE(x,y) [(y - Z akﬂk(x)> ]
k=1

« Could regularize with ridge constraint '}’ , a2 = t, since estimators
fix are usually highly correlated (trying to estimate same thing)

 Better to make weights non-negative, i.e., ax >0

+ Minimizers dx yield stacked model [igtack(X) = Z,ﬁ’; A fik(X)
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What Breiman Found

This resulting predictor Z,’L Ak iik(x) appears to almost always have
lower prediction error than the single prediction [ix having lowest
cross-validation error. The word “appears” is used because a general

proof is not yet in place. — Leo Breiman (1996)
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What Breiman Found

This resulting predictor Z,’L Ak iik(x) appears to almost always have
lower prediction error than the single prediction [ix having lowest
cross-validation error. The word “appears” is used because a general

proof is not yet in place. — Leo Breiman (1996)

Goal of talk is to theoretically confirm this in certain cases
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Breiman’s Experiments with Nested Regression Trees

* M = 50 nested regression trees fix from pruning

» Weights &, sum to 0.96

Tabie Z. Stacking Weignis
Table 1. Test Set Prediction Errors

# Terminal Nodes = Weight

Data Set
7 .29
Housing Ozone 10 13
Best Stacked Best Stacked 23 13
26 09
Error  20.9 19.0 239 216 29 12
34 20
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Experiments with Subset Regression

* M = 40 linear models /i, from stepwise deletion

» Weights &, sum to between 0.7 and 0.9

5 60l O stacked v

Model Error
O
s 2
Model Error

Model Err

w
3

20
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Statistical Model

+ Nonparametric regression with fixed design and known variance o2:

Vi=p(x)+oe, i=1,2....n & <N©O,1)

 Accuracy of estimator i measured by in-sample error, i.e.,

n

= Al = % 3 (u0) — )2

i=1
« Training error of fi is

N 1¢ N
ly — P = o DI — ax))?
P
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Best (Top-performing) Single Model

» Suppose i is least-squares projection of y onto (fixed) space Ay of
dimension dj
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Best (Top-performing) Single Model

» Suppose i is least-squares projection of y onto (fixed) space Ay of
dimension dj

Define best single model /ipest as fi;, where

2
z . . o°d
k € argmin Hyf,ukH2+)\—k
= M n

§(=nooog

Choosing A = 2 corresponds to model selected by AIC, Mallows’s C,

Choosing A = log(n) corresponds to model selected by BIC

* In certain cases, criteria will asymptotically select same model as
leave-one-out cross-validation

Will describe performance of [igiack relative to fipest

25/56



Nested Regressions

« Among various model structures, Breiman focused on stacking

26/56



Nested Regressions

« Among various model structures, Breiman focused on stacking

1. Decision trees resulting from pruning large tree upwards

27/56



Nested Regressions

« Among various model structures, Breiman focused on stacking
1. Decision trees resulting from pruning large tree upwards

2. Linear regressions resulting from stepwise deletion

28/56



Nested Regressions

» Among various model structures, Breiman focused on stacking
1. Decision trees resulting from pruning large tree upwards
2. Linear regressions resulting from stepwise deletion

* In both cases, estimators jix are least-squares projections of y onto
nested subspaces A1 c Ao < --- < Ay

29/56



Nested Regressions

» Among various model structures, Breiman focused on stacking
1. Decision trees resulting from pruning large tree upwards
2. Linear regressions resulting from stepwise deletion

* In both cases, estimators jix are least-squares projections of y onto
nested subspaces A1 c Ao < --- < Ay

» Because models are nested,
Cﬁ < C& < e < Cﬂ4

and
ly — aml? < - < |y — pel® < ly — P
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+ Ideally want weights to minimize expected in-sample error
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Learning Stacking Weights

Ideally want weights to minimize expected in-sample error

2
Err(a l Z Qkflk 17

subject to non-negativity constraint ax > 0

Unbiased estimator of error

202
Err(a) = ElFx’(a) + Tdf(a) — 021

« Training error R(« Hy Zk 1 akukH

Degrees of freedom df(a) = Zk:1 o dk
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First Attempt

» Solve quadratic program with linear constraints:
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First Attempt

» Solve quadratic program with linear constraints:

2
minimize  R(«a) + 2%df(oz) —0?

subjectto ax =0, k=1,2,....M
 Solution & satisfies

R 202 5 402
E[Em(&)] =E R(a)—i—Tdf(a)—U +THaH,go + lower order terms

+ So R(&) + 2%de(&) — 02 is no longer unbiased estimator of error for
stacked model with adaptive weights
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Second Attempt

* Let dim(«) denote dimension of stacked model, max,{dk : a, # 0}
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Second Attempt

* Let dim(«) denote dimension of stacked model, max,{dk : a, # 0}

+ Solve similar (but non-convex) program:

S 20° s a2 (A—1)2
minimize  R(«a) + Tdf(a) ot

dim(a)
subjectto ax >0, k=1,2,....M

Solvable in O(M) time by reducing problem to isotonic regression
+ Same complexity as finding best single model

« Solution satisfies ZkM=1 ax < 1, despite no explicit sum constraint
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Reduction to Isotonic Regression

» Due to nested structure and non-negative constraints, problem
reduces to weighted isotonic regression:
M
minimize " Wk(2x — k)?
k=1
subjectto v1 <y < --- <,

where wi = [y — k1] — |y — fix|* and zx = (ck — dk—1)/wk

42 /56



Reduction to Isotonic Regression

» Due to nested structure and non-negative constraints, problem
reduces to weighted isotonic regression:

M

minimize " Wk(2x — k)?
k=

subjectto v <7y <--- <qm,

where wi = [y — k1] — |y — fix|* and zx = (ck — dk—1)/wk

» Closed-form solution:

o di —d
— min max — —
n k2 S Ty = ATE =Ty —

Ak =

43/56



Closed-Form Representations of /isiack and [ipest

Theorem (Chen, K., & Tan, 2023)
The following representations hold:

M

fivest(X) = ) (Ak(X) — fik—1(X))1(Fx < 1/A),
k=1

M
fistack (X) = D (fuk (X) — fuk—1(x)) (1 = A)1 (B < 1/A)
k=

—_
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Theorem (Chen, K., & Tan, 2023)
The following representations hold:
M

fivest(X) = ) (Ak(X) — fik—1(X))1(Fx < 1/A),
k=1

M
fistack (X) = D (fuk (X) — fuk—1(x)) (1 = A)1 (B < 1/A)
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* Best single model performs hard thresholding on predictive
differences jix(x) — fik—1(x) across successive sub-models

» Stacked model additionally shrinks these predictive differences
towards zero by factor (1 — 4x)

» Performs model selection and adaptive shrinkage simultaneously
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Theorem (Chen, K., & Tan, 2023)
If dx > dk_1 + 4 for all k, then

E[HN - ﬂstackHZ] < E[HM - ﬂbest“z]

» Theoretically confirms Breiman’s empirical findings
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Error Gap Between [isiack and [ipest

* Error gap E[| 1 — fivest|? — ||t — fistack ] can be lower bounded by

o2 [ , (d — 4k)? ]

0| 129kem (n/o?)([y 2 =y — ilP)
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Error Gap Between [isiack and [ipest

* Error gap E[| 1 — fivest|? — ||t — fistack ] can be lower bounded by

o2

Z min G 4k)2
n | 1<ksm (n/a?)(|y[? — ly — fik]?)

+ Similar to improvement from applying James-Stein shrinkage
(non-adaptively) to individual model

+ As with James-Stein shrinkage, gap tends to be larger when
signal-to-noise ratio |u||/c or sample size are small
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Conclusion

In past statistical work, all the focus has been on selecting the “best”
single model from a class of models. We may need to shift our
thinking to the possibility of forming combinations of models... — Leo
Breiman (1996)
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Future Work

+ Stack non-nested models, such as ridge regressions

» Characterize complexity of stacked model (usually larger than best
single model)

e Connect to other ensemble methods like random forests
(randomization + model selection)

55/56



Thank you!

Chen, K., & Tan, Error Reduction from Stacked Regressions (2023)

Available at klusowski.princeton.edu
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