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Stacked Generalizations and Stacked Regressions

• Data analyst rarely knows a priori what the true model is

• Starts by deriving collection of candidate models µ̂1, µ̂2, . . . , µ̂M

• Next step is to select best model based on criterion such as AIC, BIC,
or out-of-sample error (e.g., cross-validation)

• David Wolpert (1992): Use predictions from these estimators as
inputs for another (combined) model

• Leo Breiman (1996): Operationalized Wolpert’s idea by restricting
combined models to have form

M
ÿ

k“1

α̂k µ̂k

• Method has found widespread applications (finance, healthcare,
commerce, ..., Kaggle competitions)
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Stacked Model

• How to learn stacking weights α̂k ?

• Breiman suggested cross-validation to estimate test error

Epx,yq

«˜

y ´
M
ÿ

k“1

αk µ̂k pxq

¸2ff

• Could regularize with ridge constraint
řM

k“1 α
2
k “ t , since estimators

µ̂k are usually highly correlated (trying to estimate same thing)

• Better to make weights non-negative, i.e., αk ě 0

• Minimizers α̂k yield stacked model µ̂stackpxq “
řM

k“1 α̂k µ̂k pxq
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What Breiman Found

This resulting predictor
řM

k“1 α̂k µ̂k pxq appears to almost always have
lower prediction error than the single prediction µ̂k having lowest
cross-validation error. The word “appears” is used because a general
proof is not yet in place. — Leo Breiman (1996)

Goal of talk is to theoretically confirm this in certain cases
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Breiman’s Experiments with Nested Regression Trees

• M “ 50 nested regression trees µ̂k from pruning

• Weights α̂k sum to 0.96
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Breiman’s Experiments with Subset Regressions

• M “ 40 linear models µ̂k from stepwise deletion

• Weights α̂k sum to between 0.7 and 0.9
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Statistical Model

• Nonparametric regression with fixed design and known variance σ2:

yi “ µpxiq ` σεi , i “ 1,2, . . . ,n, εi
iid
„ Np0,1q

• Accuracy of estimator µ̂ measured by in-sample error, i.e.,

}µ´ µ̂}2 “
1
n

n
ÿ

i“1

pµpxiq ´ µ̂pxiqq
2

• Training error of µ̂ is

}y ´ µ̂}2 “
1
n

n
ÿ

i“1

pyi ´ µ̂pxiqq
2
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Best (Top-performing) Single Model

• Suppose µ̂k is least-squares projection of y onto (fixed) space Ak of
dimension dk

• Define best single model µ̂best as µ̂k̂ , where

k̂ P argmin
k“1,2,...,M

}y ´ µ̂k}
2 ` λ

σ2dk

n

• Choosing λ “ 2 corresponds to model selected by AIC, Mallows’s Cp

• Choosing λ “ logpnq corresponds to model selected by BIC

• In certain cases, criteria will asymptotically select same model as
leave-one-out cross-validation

• Will describe performance of µ̂stack relative to µ̂best
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Nested Regressions

• Among various model structures, Breiman focused on stacking

1. Decision trees resulting from pruning large tree upwards

2. Linear regressions resulting from stepwise deletion

• In both cases, estimators µ̂k are least-squares projections of y onto
nested subspaces A1 Ă A2 Ă ¨ ¨ ¨ Ă AM

• Because models are nested,

d1 ă d2 ă ¨ ¨ ¨ ă dM

and
}y ´ µ̂M}

2 ă ¨ ¨ ¨ ă }y ´ µ̂2}
2 ă }y ´ µ̂1}

2
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Learning Stacking Weights

• Ideally want weights to minimize expected in-sample error

Errpαq “ E

«
›

›

›

›

›

µ´
M
ÿ

k“1

αk µ̂k

›

›

›

›

›

2ff

,

subject to non-negativity constraint αk ě 0

• Unbiased estimator of error

Errpαq “ E

«

Rpαq `
2σ2

n
dfpαq ´ σ2

ff

• Training error Rpαq “
›

›

›
y ´

řM
k“1 αk µ̂k

›

›

›

2

• Degrees of freedom dfpαq “
řM

k“1 αk dk
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First Attempt

• Solve quadratic program with linear constraints:

minimize Rpαq `
2σ2

n
dfpαq ´ σ2

subject to αk ě 0, k “ 1,2, . . . ,M

• Solution α̂ satisfies

E
“

Errpα̂q
‰

“ E

«

Rpα̂q`
2σ2

n
dfpα̂q´σ2`

4σ2

n
}α̂}`0 ` lower order terms

ff

• So Rpα̂q ` 2σ2

n dfpα̂q ´ σ2 is no longer unbiased estimator of error for
stacked model with adaptive weights
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Second Attempt

• Let dimpαq denote dimension of stacked model, maxktdk : αk ‰ 0u

• Solve similar (but non-convex) program:

minimize Rpαq `
2σ2

n
dfpαq ´ σ2 `

σ2

n
pλ´ 1q2

λ
dimpαq

subject to αk ě 0, k “ 1,2, . . . ,M

• Solvable in OpMq time by reducing problem to isotonic regression

• Same complexity as finding best single model

• Solution satisfies
řM

k“1 α̂k ă 1, despite no explicit sum constraint
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Reduction to Isotonic Regression

• Due to nested structure and non-negative constraints, problem
reduces to weighted isotonic regression:

minimize
M
ÿ

k“1

wk pzk ´ γk q
2

subject to γ1 ď γ2 ď ¨ ¨ ¨ ď γM ,

where wk “ }y ´ µ̂k´1}
2 ´ }y ´ µ̂k}

2 and zk “ pdk ´ dk´1q{wk

• Closed-form solution:

γ̂k “
σ2

n
min

kďiďM
max

0ďjăk

di ´ dj

}y ´ µ̂j}
2 ´ }y ´ µ̂i}

2
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Closed-Form Representations of µ̂stack and µ̂best

Theorem (Chen, K., & Tan, 2023)
The following representations hold:

µ̂bestpxq “
M
ÿ

k“1

pµ̂k pxq ´ µ̂k´1pxqq1pγ̂k ă 1{λq,

µ̂stack pxq “
M
ÿ

k“1

pµ̂k pxq ´ µ̂k´1pxqqp1´ γ̂k q1pγ̂k ă 1{λq

• Best single model performs hard thresholding on predictive
differences µ̂k pxq ´ µ̂k´1pxq across successive sub-models

• Stacked model additionally shrinks these predictive differences
towards zero by factor p1´ γ̂k q

• Performs model selection and adaptive shrinkage simultaneously

44 / 56



Closed-Form Representations of µ̂stack and µ̂best

Theorem (Chen, K., & Tan, 2023)
The following representations hold:

µ̂bestpxq “
M
ÿ

k“1

pµ̂k pxq ´ µ̂k´1pxqq1pγ̂k ă 1{λq,

µ̂stack pxq “
M
ÿ

k“1

pµ̂k pxq ´ µ̂k´1pxqqp1´ γ̂k q1pγ̂k ă 1{λq

• Best single model performs hard thresholding on predictive
differences µ̂k pxq ´ µ̂k´1pxq across successive sub-models

• Stacked model additionally shrinks these predictive differences
towards zero by factor p1´ γ̂k q

• Performs model selection and adaptive shrinkage simultaneously

45 / 56



Closed-Form Representations of µ̂stack and µ̂best

Theorem (Chen, K., & Tan, 2023)
The following representations hold:

µ̂bestpxq “
M
ÿ

k“1

pµ̂k pxq ´ µ̂k´1pxqq1pγ̂k ă 1{λq,

µ̂stack pxq “
M
ÿ

k“1

pµ̂k pxq ´ µ̂k´1pxqqp1´ γ̂k q1pγ̂k ă 1{λq

• Best single model performs hard thresholding on predictive
differences µ̂k pxq ´ µ̂k´1pxq across successive sub-models

• Stacked model additionally shrinks these predictive differences
towards zero by factor p1´ γ̂k q

• Performs model selection and adaptive shrinkage simultaneously
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Main Result

Theorem (Chen, K., & Tan, 2023)
If dk ě dk´1 ` 4 for all k , then

E
“

}µ´ µ̂stack}
2‰ ă E

“

}µ´ µ̂best}
2‰

• Theoretically confirms Breiman’s empirical findings
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Error Gap Between µ̂stack and µ̂best

• Error gap E
“

}µ´ µ̂best}
2 ´ }µ´ µ̂stack}

2
‰

can be lower bounded by

σ2

n
E

«

min
1ďkďM

pdk ´ 4kq2

pn{σ2qp}y}2 ´ }y ´ µ̂k}
2q

ff

• Similar to improvement from applying James-Stein shrinkage
(non-adaptively) to individual model

• As with James-Stein shrinkage, gap tends to be larger when
signal-to-noise ratio }µ}{σ or sample size are small
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Conclusion

In past statistical work, all the focus has been on selecting the “best”
single model from a class of models. We may need to shift our
thinking to the possibility of forming combinations of models... — Leo
Breiman (1996)
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Future Work

• Stack non-nested models, such as ridge regressions

• Characterize complexity of stacked model (usually larger than best
single model)

• Connect to other ensemble methods like random forests
(randomization + model selection)
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Thank you!

Chen, K., & Tan, Error Reduction from Stacked Regressions (2023)

Available at klusowski.princeton.edu
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